Previous |  Up |  Next

Article

Keywords:
global existence; uniqueness; uniform stabilization
Summary:
We study the existence of global in time and uniform decay of weak solutions to the initial-boundary value problem related to the dynamic behavior of evolution equation accounting for rotational inertial forces along with a linear nonlocal frictional damping arises in viscoelastic materials. By constructing appropriate Lyapunov functional, we show the solution converges to the equilibrium state polynomially in the energy space.
References:
[1] Aassila, M., Cavalcanti, M. M., Soriano, J. A.: Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain. SIAM J. Control Optim. 38 (2000), 1581-1602. DOI 10.1137/S0363012998344981 | MR 1766431 | Zbl 0985.35008
[2] Achouri, Z., Amroun, N. E., Benaissa, A.: The Euler-Bernoulli beam equation with boundary dissipation of fractional derivative type. Math. Methods Appl. Sci. 40 (2017), 3837-3854. DOI 10.1002/mma.4267 | MR 3668815 | Zbl 1366.93484
[3] Aizicovici, S., Feireisl, E.: Long-time stabilization of solutions to a phase-field model with memory. J. Evol. Equ. 1 (2001), 69-84. DOI 10.1007/PL00001365 | MR 1838321 | Zbl 0973.35037
[4] Cavalcanti, M. M., Oquendo, H. P.: Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J. Control Optimization 42 (2003), 1310-1324. DOI 10.1137/S0363012902408010 | MR 2044797 | Zbl 1053.35101
[5] Chill, R., Fašangová, E.: Convergence to steady states of solutions of semilinear evolutionary integral equations. Calc. Var. Partial Differ. Equ. 22 (2005), 321-342. DOI 10.1007/s00526-004-0278-5 | MR 2118902 | Zbl 1087.45005
[6] Coleman, B. D., Dill, E. H.: On the thermodynamics of electromagnetic fields in materials with memory. Arch. Rational Mech. Anal. 41 (1971), 132-162. DOI 10.1007/BF00281371 | MR 0347245
[7] Coleman, B. D., Dill, E. H.: Thermodynamic restriction on the constitutive equations of electromagnetic theory. Zeit. Angew. Math. Phys. 22 (1971), 691-702. DOI 10.1007/BF01587765 | Zbl 0218.35072
[8] Dafermos, C. M.: Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal. 37 (1970), 297-308. DOI 10.1007/BF00251609 | MR 0281400 | Zbl 0214.24503
[9] Desch, W., Fašangová, E., Milota, J., Propst, G.: Stabilization through viscoelastic boundary damping: a semigroup approach. Semigroup Forum 80 (2010), 405-415. DOI 10.1007/s00233-009-9197-2 | MR 2647481 | Zbl 1193.35149
[10] Eringen, A. C., Maugin, G. A.: Electrodynamics of Continua. I. Foundations and Solid Media. Springer, New York (1990). DOI 10.1007/978-1-4612-3226-1 | MR 1031714
[11] Fabrizio, M., Morro, A.: Thermodynamics of electromagnetic isothermal system with memory. J. Non-Equilibrium Thermodyn. 22 (1997), 110-128. DOI 10.1515/jnet.1997.22.2.110 | Zbl 0889.73004
[12] Giorgi, C., Naso, M. G., Pata, V.: Energy decay of electromagnetic systems with memory. Math. Models Methods Appl. Sci. 15 (2005), 1489-1502. DOI 10.1142/S0218202505000844 | MR 2168942 | Zbl 1078.35018
[13] Han, X., Wang, M.: Global existence and uniform decay for a nonlinear viscoelastic equation with damping. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70 (2009), 3090-3098. DOI 10.1016/j.na.2008.04.011 | MR 2503053 | Zbl 1173.35579
[14] Han, X., Wang, M.: General decay of energy for a viscoelastic equation with nonlinear damping. Math. Methods Appl. Sci. 33 (2010), 346-358. DOI 10.1002/mma.1041 | MR 2484178 | Zbl 1161.35319
[15] Komornik, V., Zuazua, E.: A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. (9) 69 (1990), 33-54. MR 1054123 | Zbl 0636.93064
[16] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes mathematiques. Dunod; Gauthier-Villars, Paris (1969), French. MR 0259693 | Zbl 0189.40603
[17] Matignon, M., Audounet, J., Montseny, G.: Energy decay rate for wave equations with damping of fractional order. Fourth Int. Conf. Mathematical and Numerical Aspects of Wave Propagation Phenomena (1998), 638-640.
[18] Matos, L. P. V., Dmitriev, V.: On the stability of energy and harmonic waves in conductors with memory. SBMO/IEEE MTT-S Int. Microwave and Optoelectronics Conf. (IMOC) IEEE, Belem (2009), 528-532. DOI 10.1109/IMOC.2009.5427530
[19] Maugin, G. A.: Continuum Mechanics of Electromagnetic Solids. North-Holland Series in Applied Mathematics and Mechanics 33. North-Holland, Amsterdam (1988). DOI 10.1002/zamm.19890691106 | MR 0954611 | Zbl 0652.73002
[20] Mbodje, B.: Wave energy decay under fractional derivative controls. IMA J. Math. Control Inf. 23 (2006), 237-257. DOI 10.1093/imamci/dni056 | MR 2211512 | Zbl 1095.93015
[21] Messaoudi, S. A.: General decay of the solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 69 (2008), 2589-2598. DOI 10.1016/j.na.2007.08.035 | MR 2446355 | Zbl 1154.35066
[22] Rivera, J. E. Muñoz, Naso, M. G., Vuk, E.: Asymptotic behaviour of the energy for electromagnetic systems with memory. Math. Methods Appl. Sci. 27 (2004), 819-841. DOI 10.1002/mma.473 | MR 2055321 | Zbl 1054.35103
[23] Nicaise, S., Pignotti, C.: Stabilization of the wave equation with variable coefficients and boundary condition of memory type. Asymptotic Anal. 50 (2006), 31-67. MR 2286936 | Zbl 1139.35373
[24] Park, J. Y., Park, S. H.: Decay rate estimates for wave equations of memory type with acoustic boundary conditions. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 993-998. DOI 10.1016/j.na.2010.09.057 | MR 2738648 | Zbl 1202.35032
[25] Pata, V., Zucchi, A.: Attractors for a damped hyperbolic equation with linear memory. Adv. Math. Sci. Appl. 11 (2001), 505-529. MR 1907454 | Zbl 0999.35014
[26] Wu, S.-T.: General decay and blow-up of solutions for a viscoelastic equation with nonlinear boundary damping-source interactions. Z. Angew. Math. Phys. 63 (2012), 65-106. DOI 10.1007/s00033-011-0151-2 | MR 2878734 | Zbl 1242.35053
[27] Yassine, H.: Stability of global bounded solutions to a nonautonomous nonlinear second order integro-differential equation. Z. Anal. Anwend. 37 (2018), 83-99. DOI 10.4171/ZAA/1604 | MR 3746499 | Zbl 06852543
[28] Zacher, R.: Convergence to equilibrium for second order differential equations with weak damping of memory type. Adv. Differ. Equ. 14 (2009), 749-770. MR 2527692 | Zbl 1190.45007
Partner of
EuDML logo