[2] De Koninck, J.-M., Luca, F.: 
Analytic Number Theory: Exploring the Anatomy of Integers. Graduate Studies in Mathematics, vol. 134, American Mathematical Society, Providence, Rhode Island, 2012. 
MR 2919246[3] Ellison, W., Ellison, F.: 
Prime Numbers. Hermann, Paris, 1985. 
MR 0814687[4] Ennola, V.: 
On numbers with small prime divisors. Ann. Acad. Sci. Fenn. Ser. AI 440 (1969), 16 pp. 
MR 0244175[5] Erdös, P., Graham, R.L.: 
On products of factorials. Bull. Inst. Math. Acad. Sinica 4 (2) (1976), 337–355. 
MR 0460262[6] Feller, W.: 
An introduction to probability theory and its applications. Vol. I, Third edition, John Wiley $\&$ Sons, Inc., New York-London-Sydney, 1968, xviii+509 pp. 
MR 0228020[7] Granville, A.: 
Smooth numbers: computational number theory and beyond. Algorithmic number theory: lattices, number fields, curves and cryptography. Math. Sci. Res. Inst. Publ. 44 (2008), 267–323, Cambridge Univ. Press, Cambridge. 
MR 2467549[9] Nair, S.G., Shorey, T.N.: 
Lower bounds for the greatest prime factor of product of consecutive positive integers. J. Number Theory 159 (2016), 307–328. 
DOI 10.1016/j.jnt.2015.07.014 | 
MR 3412724[10] Rosser, J.B.: 
The $n$-th prime is greater than $n\log n$. Proc. London Math. Soc. (2) 45 (1938), 21–44. 
MR 1576808[12] Tenenbaum, G.: 
Introduction à la théorie analytique des nombres. Collection Échelles, Belin, 2008. 
MR 0675777