[1] Andreani, R., Martínez, J. M.:
On the solution of mathematical programming problems with equilibrium constraints. Math. Methods Oper. Res. 54 (2001), 345-359.
DOI 10.1007/s001860100158 |
MR 1890905
[2] Aiyoshi, E., Shimizu, K.:
Hierarchical decentralized systems and its new solution by a barrier method. IEEE Trans. Systems Man Cybernet. 11 (1981), 444-449.
DOI 10.1109/tsmc.1981.4308712 |
MR 0631815
[6] Ferris, M. C., Dirkse, S. P., Meeraus, A.:
Mathematical Programs with Equilibrium Constraints: Automatic Reformulation and Solution via Constrained Optimization. Frontiers in Applied General Equilibrium Modeling, Cambridge University Press 2002, pp. 67-94.
DOI 10.1017/cbo9780511614330.005
[10] Golbabai, A., Ezazipour, S.:
A high-performance nonlinear dynamic scheme for the solution of equilibrium constrained optimization problems. Expert Systems Appl. 82 (2017), 291-300.
DOI 10.1016/j.eswa.2017.04.016
[11] He, X., Li, C., Huang, T., Li, C. H.:
Neural network for solving convex quadratic bilevel programming problems. Neural Networks 51 (2014), 17-25.
DOI 10.1016/j.neunet.2013.11.015
[13] Hosseini, A., Hosseini, S. M.:
A new steepest descent differential inclusion-based method for solving general nonsmooth convex optimization problems. J. Optim. Theory Appl. 159 (2013), 698-720.
DOI 10.1007/s10957-012-0258-4 |
MR 3124992
[14] Hosseinipour-Mahani, N., Malek, A.:
A neurodynamic optimization technique based on overestimator and underestimator functions for solving a class of non-convex optimization problems. Math. Comput. Simul. 122 (2016), 20-34.
DOI 10.1016/j.matcom.2015.09.013 |
MR 3436939
[15] Hosseinipour-Mahani, N., Malek, A.:
Solving a class of non-convex quadratic problems based on generalized KKT conditions and neurodynamic optimization technique. Kybernetika 51 (2015), 890-908.
DOI 10.14736/kyb-2015-5-0890 |
MR 3445990
[16] Huang, X. X., Yang, X. Q., Teo, K. L.:
Partial augmented Lagrangian method and mathematical programs with complementarity constraints. Global Optim. 35 (2006), 235-254.
DOI 10.1007/s10898-005-3837-1 |
MR 2242014
[17] Jane, J. Y.:
Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints. Math. Anal. Appl. 307 (2005), 350-369.
DOI 10.1016/j.jmaa.2004.10.032 |
MR 2138995
[19] Kanzow, C., Schwartz, A.:
A new regularization method for mathematical programs with complementarity constraints with strong convergence properties. SIAM J. Optim. 23 (2013), 770-798.
DOI 10.1137/100802487 |
MR 3045664 |
Zbl 1282.65069
[22] Lan, K. M., Wen, U. P., Shih, H. S., Lee, E. S.:
A hybrid neural network approach to bilevel programming problems. Appl. Math. Lett. 20 (2007), 880-884.
DOI 10.1016/j.aml.2006.07.013 |
MR 2323126
[23] Li, J., Li, C., Wu, Z., Huang, J.:
A feedback neural network for solving convex quadratic bi-level programming problems. Neural Comput. Appl. 25 (2014), 603-611.
DOI 10.1007/s00521-013-1530-8
[24] Liu, Q., Wang, J.:
A one-layer projection neural network for nonsmooth optimization subject to linear equalities and bound constraints. IEEE Trans. Neural Networks Learning Systems 24 (2013), 812-824.
DOI 10.1109/tnnls.2013.2244908 |
MR 3453221
[25] Lv, Y., Chen, Z., Wan, Z.:
A neural network approach for solving mathematical programs with equilibrium constraints. Expert System Appl. 38 (2011), 231-234.
DOI 10.1016/j.eswa.2010.06.050 |
MR 2557563
[26] Leyffer, S.:
Complementarity constraints as nonlinear equations: Theory and numerical experience. In: Optimization with Multivalued Mappings (S. Dempe and V. Kalashnikov, eds.), Springer Optimization and Its Applications, vol 2. Springer, Boston 2006.
DOI 10.1007/0-387-34221-4\_9 |
MR 2243542
[27] Liao, L. Z., Qi, H., Qi, L.:
Solving nonlinear complementarity problems with neural networks: a reformulation method approach. J. Comput. Appl. Math. 131 (2001), 343-359.
DOI 10.1016/s0377-0427(00)00262-4 |
MR 1835721
[28] Lillo, E. W., Loh, M. H., Hui, S., Zak, H. S.:
On solving constrained optimization problems with neural networks: a penalty method approach. IEEE Trans. Neural Networks 4 (1993), 931-940.
DOI 10.1109/72.286888
[29] Lin, G. H., Fukushima, M.:
New relaxation method for mathematical programs with complementarity constraints. J. Optim. Theory Appl. 118 (2003), 81-116.
DOI 10.1023/a:1024739508603 |
MR 1995697
[30] Malek, A., Ezazipour, S., Hosseinipour-Mahani, N.:
Projected dynamical systems and optimization problems. Bull. Iranian Math. Soc. 37 (2011), 81-96.
MR 2890580 |
Zbl 1253.37091
[31] Malek, A., Ezazipour, S., Hosseinipour-Mahani, N.:
Double projection neural network for solving pseudomonotone variational inequalities. Fixed Point Theory 12 (2011), 401-418.
MR 2895702
[34] Miller, R. K., Michel, A. N.:
Ordinary Differential Equations. Academic Press, New York 1982.
MR 0660250 |
Zbl 0552.34001
[35] Outrata, J. V., Kočvara, M., Zowe, J.:
Nonsmooth Approach to Optimization Problems with Equilibrium Constraints, Theory, Applications and Numerical Results. Kluwer Academic Publishers, Dordrecht 1998.
DOI 10.1007/978-1-4757-2825-5 |
MR 1641213
[36] Outrata, J. V.:
On optimization problems with variational inequality constraints. SIAM J. Optim. 4 (1994), 340-357.
DOI 10.1137/0804019 |
MR 1273763
[37] Ranjbar, M., Effati, S., Miri, S. M.:
An artificial neural network for solving quadratic zero-one programming problems. Neurocomputing 235 (2017), 192-198.
DOI 10.1016/j.neucom.2016.12.064
[38] Sheng, Z., Lv, Z., Xu, Z.: A new algorithm based on the Frank-Wolfe method and neural network for a class of bilevel decision making problem. Acta Automat. Sinica 22 (1996), 657-665.
[40] Tank, D. W., Hopfield, J. J.:
Simple neural optimization networks: an A/D converter, signal decision circuit, and a linear programming circuit. IEEE Trans. Circuits Syst. 33 (1986), 533-541.
DOI 10.1109/tcs.1986.1085953
[41] Yang, Q. X., Huang, X. X.:
Lower-order penalty methods for mathematical programs with complementarity constraints. Optim. Methods Software 19 (2004), 693-720.
DOI 10.1080/1055678041001697659 |
MR 2102222