[1] Chang, J.:
Dynamic compensator-based second-order sliding mode controller design for mechanical systems. IET Control Theory A 7 (2013), 13, 1675-1682.
DOI 10.1049/iet-cta.2012.1027 |
MR 3115112
[2] Chen, C. K., Lai, T. W., Yan, J. J., Liao, T. L.:
Synchronization of two chaotic systems: Dynamic compensator approach. Chaos Soliton. Fract. 39 (2009), 15, 1055-1063.
DOI 10.1016/j.chaos.2007.04.004 |
MR 2512914
[4] G.-R, Duan:
Generalized Sylvester Equations - Unified Parametric Solutions. CRC Press Taylor and Francis Group, Boca Raton 2014.
MR 3380768
[5] Duan, G.-R.:
Parametric control of quasi-linear systems by output feedback. In: Proc. 14th International Conference on Control, Automation and Systems, IEEE Press, Gyeonggi-do 2014, pp. 928-934.
DOI 10.1109/iccas.2014.6987917
[6] Duan, G.-R., Yu, H.-H.:
LMIs in Control Systems Analysis, Design and Applications. CRC Press Taylor and Francis Group, Boca Raton 2013.
DOI 10.1201/b15060 |
MR 3328859
[8] Gu, D.-K., Zhang, D.-W., Duan, G.-R.:
Parametric control to a type of quasi-linear high-order systems via output feedback. Eur. J. Control. 47 (2019), 44-52.
DOI 10.1016/j.ejcon.2018.09.008 |
MR 3948880
[9] Gu, D.-K., Zhang, D.-W., Duan, G.-R.:
Parametric control to linear time-varying systems based on dynamic compensator and multi-objective optimization. Asian J. Control (2019).
DOI 10.1002/asjc.2112 |
MR 4001112
[10] Gu, D.-K., Zhang, D.-W.:
Parametric control to second-order linear time-varying systems based on dynamic compensator and multi-objective optimization. App. Math. Comput. 365 (2020), 124681.
DOI 10.1016/j.amc.2019.124681 |
MR 4001112
[11] Hashem, I., Telen, D., Nimmegeers, P., Logist, F., Impe, J. V.:
Multi-objective optimization of a plug flow reactor using a divide and conquer approach. IFAC-PapersOnLine 50 (2017), 1, 8722-8727.
DOI 10.1016/j.ifacol.2017.08.1712
[12] Jadachowski, L., Meurer, T., Kugi, A.:
Backstepping observers for periodic quasi-linear parabolic PDEs. IFAC Proc. Vol. 47 (2014), 3, 7761-7766.
DOI 10.3182/20140824-6-za-1003.01246
[13] Klug, M., Castelan, E. B., Leite, V. J S.:
A dynamic compensator for parameter varying systems subject to actuator limitations applied to a T-S fuzzy system. IFAC Proc. Vol. 44 (2011), 1, 14495-145000.
DOI 10.3182/20110828-6-it-1002.02175
[14] Knüppel, T., Woittennek, F.:
Control design for quasi-linear hyperbolic systems with an application to the heavy rope. IEEE T. Automat. Control 60 (2015), 1, 5-18.
DOI 10.1109/tac.2014.2336451 |
MR 3299410
[16] Li, K., Nagasio, T., Kida, T.:
Gain-scheduling control for extending space structures. Trans. Japan Soc. Mechani. Engineers Series C 70 (2004), 702, 1401-1408.
DOI 10.1299/kikaic.70.1401
[17] Lim, D., Yi, K., Jung, S., Jung, H., Ro, J.:
Optimal design of an interior permanent magnet synchronous motor by using a new surrogate-assisted multi-objective optimization. IEEE T. Magn. 51 (2015), 11, 1-4.
DOI 10.1109/tmag.2015.2449872
[18] Liu, G.-P., Patton, R. J.: Eigenstructure Assignment for Control System Design. John Wiley and Sons, Hoboken 1998.
[20] Mehrotra, K., Mahapatra, P.:
A jerk model to tracking highly maneuvering targets. IEEE T. Aero. Elec. Sys. 33 (1997), 4, 1094-1105.
DOI 10.1109/7.624345
[21] Mihai, M.:
Optimal singular control for quasi-linear systems with small parameters. Proc. Appl. Math. Mech. 7 (2007), 4130033-4130034.
DOI 10.1002/pamm.200700782
[22] Patton, R. J., Liu, G.-P., Patel, Y.:
Sensitivity properties of multirate feedback control systems, based on eigenstructure assignment. IEEE Trans. Automat. Control 40 (1995), 2, 337-342.
DOI 10.1109/9.341806 |
MR 1312908
[23] Rotondo, D., Nejjari, F., Puig, V.:
Model reference switching quasi-LPV control of a four wheeled omnidirectional robot. IFAC Proc. Vol. 47 (2014), 3, 4062-4067.
DOI 10.3182/20140824-6-za-1003.00054
[25] She, S. X., Dong, S. J.: Varying accelerated motion and comfort. Phys. Engrg. 16 (2006), 35-37. (In Chinese)
[26] Slotine, J.-J. E., Li, W.-P.:
Applied Nonlinear Control. Pearson Education Company, Upper Saddle River 1991.
Zbl 0753.93036
[27] Tang, Y. R., Xiao, X., Li, Y. M.:
Nonlinear dynamic modeling and hybrid control design with dynamic compensator for a small-scale UAV quadrotor. Measurement 109 (2017), 51-64.
DOI 10.1016/j.measurement.2017.05.036
[28] Tsuzuki, T., Yamashita, Y.:
Global asymptotic stabilization for a nonlinear system on a manifold via a dynamic compensator. IFAC Proc. Vol. 41 (2008), 2, 6178-6183.
DOI 10.3182/20080706-5-kr-1001.01043
[29] Yi, T., Huang, D., Fu, F., He, H., Li, T.:
Multi-objective bacterial foraging optimization algorithm based on parallel cell entropy for aluminum electrolysis production process. IEEE Trans. Ind. Electron. 63 (2016), 4, 2488-2500.
DOI 10.1109/tie.2015.2510977
[30] Yuno, T., Ohtsuka, Y.:
Rendering a prescribed subset invariant for polynomial systems by dynamic state-feedback compensator. IFAC-PapersOnLine 49 (2016), 18, 1042-1047.
DOI 10.1016/j.ifacol.2016.10.305
[32] Zhou, D., Wang, J., Jiang, B., Guo, H., Ji, Y.:
Multi-task multi-view learning based on cooperative multi-objective optimization. IEEE Access 6 (2018), 19465-19477.
DOI 10.1109/access.2017.2777888
[33] Zola, E., Barcelo-Arroyo, F., Kassler, A.:
Multi-objective optimization of WLAN associations with improved handover costs. IEEE Commun. Lett. 18 (2014), 11, 2007-2010.
DOI 10.1109/lcomm.2014.2359456