[2] Amirteimoori, A., Khoshandam, L.:
A data envelopment analysis approach to supply chain efficiency. Adv. Decision Sci. 8 (2011), 1-8.
DOI 10.1155/2011/608324 |
MR 2862474
[3] Amirteimoori, A., Khoshandam, L., Kordrostami, S.:
Recyclable outputs in production process: a data envelopment analysis approach. Int. J. Oper. Res. 18 (2013), 62-70.
DOI 10.1504/ijor.2013.055529 |
MR 3136122
[4] Amirteimoori, A., Kordrostami, S., Azizi, H.:
Additive models for network data envelopment analysis in the presence of shared resources. Transport. Res. D-Tr. E. 48 (2016), 411-424.
DOI 10.1016/j.trd.2015.12.016
[5] Amirteimoori, A., Toloie-Eshlaghi, A., Homayoonfar, M.: Efficiency measurement in Two-Stage network structures considering undesirable outputs. Int. J. Industr. Math. 6 (2014), 65-71.
[6] Amirteimoori, A., Yang, F.:
A DEA model for two-stage parallel-series production processes. RAIRO-Oper. Res. 48 (2014), 123-134.
DOI 10.1051/ro/2013057 |
MR 3177881
[7] Atici, K. B., Podinovski, V. V.:
Using data envelopment analysis for the assessment of technical efficiency of units with different specialisations: An application to agriculture. Omega 54 (2015), 72-83.
DOI 10.1016/j.omega.2015.01.015
[9] Aviles-Sacoto, S., Cook, W. D., Imanirad, R., Zhu, J.:
Two-stage network DEA: when intermediate measures can be treated as outputs from the second stage. J. Oper. Res. Soc. 66 (2015), 1868-1877.
DOI 10.1057/jors.2015.14
[10] Avkiran, N. K.:
An illustration of dynamic network DEA in commercial banking including robustness tests. Omega 55 (2015), 141-150.
DOI 10.1016/j.omega.2014.07.002
[11] Balfaqih, H., Nopiah, Z. M., Saibani, N., Al-Nory, M. T.:
Review of supply chain performance measurement systems: 1998-2015. Comput. Ind. 82 (2016), 135-150.
DOI 10.1016/j.compind.2016.07.002
[13] Beasley, J. E.:
Determining teaching and research efficiencies. J. Oper. Res. Soc. 46 (1995), 441-452.
DOI 10.1057/jors.1995.63
[14] Bian, Y., Liang, N., Xu, H.:
Efficiency evaluation of Chinese regional industrial systems with undesirable factors using a two-stage slacks-based measure approach. J. Clean. Prod. 87 (2015), 348-356.
DOI 10.1016/j.jclepro.2014.10.055 |
MR 3679962
[15] Chao, C. M., Yu, M. M., Wu, H. N.:
An application of the dynamic network DEA model: The case of banks in Taiwan. Emerg. Mark. Financ. Tr. 51 (2015), S133- S151.
DOI 10.1016/j.jclepro.2014.10.055
[18] Chen, W. C.:
Revisiting dual-role factors in data envelopment analysis: derivation and implications. IIE. Trans. 7 (2014), 653-663.
DOI 10.1080/0740817x.2012.721943
[21] Cook, W. D., Green, R. H., Zhu, J.:
Dual-role factors in data envelopment analysis. IIE. Trans. 38 (2006), 105-115.
DOI 10.1080/07408170500245570
[22] Cook, W. D., Zhu, J.:
Classifying inputs and outputs in data envelopment analysis. Eur. J. Oper. Res. 180 (2007), 692-699.
DOI 10.1016/j.ejor.2006.03.048
[23] Despotis, D. K., Sotiros, D., Koronakos, G.:
A network DEA approach for series multi-stage processes. Omega 61 (2016), 35-48.
DOI 10.1016/j.omega.2015.07.005
[25] Fang, L.:
Optimal budget for system design series network DEA model. J. Oper. Res. Soc. 65 (2014), 1781-1787.
DOI 10.1057/jors.2013.153
[30] Fukuyama, H., Weber, W. L.:
Measuring Japanese bank performance: a dynamic network DEA approach. J. Prod. Anal. 44 (2015), 249-264.
DOI 10.1007/s11123-014-0403-1
[31] Heidari, M. D., Omid, M., Akram, A.:
Optimization of energy consumption of broiler production farms using data envelopment analysis approach. Modern Appl. Sci. 5 (2011), 69-78.
DOI 10.5539/mas.v5n3p69
[32] Johnes, J.:
Data envelopment analysis and its application to the measurement of efficiency in higher education. Econom. Educ. Rev. 25 (2006), 273-288.
DOI 10.1016/j.econedurev.2005.02.005
[35] Kao, C., Hwang, S. N.:
Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. Eur. J. Oper. Res. 185 (2008), 418-429.
DOI 10.1016/j.ejor.2006.11.041
[36] Kao, C., Hwang, S. N.:
Efficiency measurement for network systems: IT impact on firm performance. Decision Support Syst. 48 (2010), 437-446.
DOI 10.1016/j.dss.2009.06.002
[37] Kordrostami, S., Noveiri, M. Jahani Sayyad:
Evaluating the efficiency of decision making units in the presence of flexible and negative data. Indian. J. Sci. Technol. 5 (2012), 3776-3782.
DOI 10.17485/ijst/2012/v5i12.20
[38] Liang, L., Li, Z. Q., Cook, W. D., Zhu, J.:
Data envelopment analysis efficiency in two-stage networks with feedback. IIE Trans. 43 (2011), 309-322.
DOI 10.1080/0740817x.2010.509307
[40] Liu, W., Zhou, Z., Ma, C., Liu, D., Shen, W.:
Two-stage DEA models with undesirable input-intermediate-outputs. Omega 56 (2015), 74-87.
DOI 10.1016/j.omega.2015.03.009 |
MR 3362977
[42] Lozano, S.:
Slacks-based inefficiency approach for general networks with bad outputs: An application to the banking sector. Omega 60 (2016), 73-84.
DOI 10.1016/j.omega.2015.02.012
[43] Lozano, S., Gutiérrez, E., Moreno, P.:
Network DEA approach to airports performance assessment considering undesirable outputs. Appl. Math. Model. 37 (2013), 1665-1676.
DOI 10.1016/j.apm.2012.04.041
[44] Ma, J.:
A two-stage DEA model considering shared inputs and free intermediate measures. Expert. Syst. Appl. 42 (2015), 4339-4347.
DOI 10.1016/j.eswa.2015.01.040
[45] Maghbouli, M., Amirteimoori, A., Kordrostami, S.:
Two-stage network structures with undesirable outputs: A DEA based approach. Measurement 48 (2014), 109-118.
DOI 10.1016/j.measurement.2013.10.032
[46] Momeni, E., Tavana, M., Mirzagoltabar, H., Mirhedayatian, S. M.:
A new fuzzy network slacks-based DEA model for evaluating performance of supply chains with reverse logistics. J. Intell. Fuzzy Syst. 27 (2014), 793-804.
DOI 10.3233/ifs-131037 |
MR 3256936
[47] Omrani, H., Soltanzadeh, E.:
Dynamic DEA models with network structure: An application for Iranian airlines. J. Air. Transp. Manag. 57 (2016), 52-61.
DOI 10.1016/j.jairtraman.2016.07.014
[48] Pastor, J. T., Ruiz, J. L., Sirvent, I.:
An enhanced DEA Russell graph efficiency measure. Eur. J. Oper. Res. 115 (1999), 596-607.
DOI 10.1016/s0377-2217(98)00098-8
[49] Rezaee, A., Esmaielzadeh, A.: Application of data envelopment analysis to evaluation energy efficiency in broiler production farms (case study: Maku free zone). Animal. Sci. J. 30 (2018), 27-40.
[50] Seiford, L. M., Zhu, J.:
Profitability and marketability of the top 55 US commercial banks. Management Sci. 45 (1999), 1270-1288.
DOI 10.1287/mnsc.45.9.1270
[51] Shabani, A., Saen, R. Farzipoor:
Developing a novel data envelopment analysis model to determine prospective benchmarks of green supply chain in the presence of dual-role factor. Benchmark. Int. J. 22 (2015), 711-730.
DOI 10.1108/bij-12-2012-0087
[52] Tajbakhsh, A., Hassini, E.:
A data envelopment analysis approach to evaluate sustainability in supply chain networks. J. Clean. Prod. 105 (2015), 74-85.
DOI 10.1016/j.jclepro.2014.07.054
[53] Tavana, M., Mirzagoltabar, H., Mirhedayatian, S. M., Saen, R. Farzipoor, Azadi, M.:
A new network epsilon-based DEA model for supply chain performance evaluation. Comput. Ind. Engrg. 66 (2013), 501-513.
DOI 10.1016/j.cie.2013.07.016
[54] Toloo, M., Keshavarz, E., Hatami-Marbini, A.:
Dual-role factors for imprecise data envelopment analysis. Omega 77 (2018), 15-31.
DOI 10.1016/j.omega.2017.05.005
[57] Wei, Q. L., Chang, T. S:
Optimal system design series-network DEA models. J. Oper. Res. Soc. 62 (2011), 1109-1119.
DOI 10.1057/jors.2010.45
[58] Wu, J., Zhu, Q., Ji, X., Chu, J., Liang, L.:
Two-stage network processes with shared resources and resources recovered from undesirable outputs. Eur. J. Oper. Res. 251 (2016), 182-197.
DOI 10.1016/j.ejor.2015.10.049 |
MR 3447062
[59] Yang, F., Wu, D., Liang, L., Bi, G., Wu, D. D.:
Supply chain DEA: production possibility set and performance evaluation model. Ann. Oper. Res. 185 (2011), 195-211.
DOI 10.1007/s10479-008-0511-2 |
MR 2788794
[60] Zhu, J.:
Models for Evaluating Supply Chains and Network Structures. In: Quantitative Models for Performance Evaluation And Benchmarking: Data Envelopment Analysis with Spreadsheets. Springer International Publishing: Cham. 2014, pp. 311-344.
DOI 10.1007/978-3-319-06647-9_15 |
MR 3308434