Previous |  Up |  Next

Article

Keywords:
complex-variable system; delayed; uncertain; stability; aperiodically intermittent control
Summary:
This paper focuses on the problem of exponential stability analysis of uncertain complex-variable time delayed chaotic systems, where the parameters perturbation are bounded assumed. The aperiodically intermittent control strategy is proposed to stabilize the complex-variable delayed systems. By taking the advantage of Lyapunov method in complex field and utilizing inequality technology, some sufficient conditions are derived to ensure the stability of uncertain complex-variable delayed systems, where the constrained time delay are considered in the conditions obtained. To protrude the availability of the devised stability scheme, simulation examples are ultimately demonstrated.
References:
[1] Cai, S., Zhou, P., Liu, Z.: Pinning synchronization of hybrid-coupled directed delayed dynamical network via intermittent control. Chaos 24 (2014), 033102. DOI 10.1063/1.4886186 | MR 3404400
[2] Carr, T. W., Schwartz, I. B.: Controlling the unstable steady state in a multimode laser. Phys. Rev. E 51 (1995), 5109-5111. DOI 10.1103/physreve.51.5109
[3] Chen, T., Liu, X., Lu, W.: Pinning complex networks by a single controller. IEEE Trans. Circuits Systems I 54 (2007), 1317-1326. DOI 10.1109/tcsi.2007.895383 | MR 2370589
[4] Dong, Y., Liang, S., Guo, L., Wang, W.: Exponential stability and stabilization for uncertain discrete-time periodic systems with time-varying delay. IMA J. Math. Control Inform. 35 (2018), 3, 963-986. DOI 10.1093/imamci/dnx003 | MR 3858299
[5] Fang, T., Sun, J.: Stability of complex-valued impulsive system with delay. Appl. Math. Comput. 240 (2014), 102-108. DOI 10.1016/j.amc.2014.04.062 | MR 3213676
[6] Fang, T., Sun, J.: Stability of complex-valued impulsive and switching system and application to the Lü system. Nonlinear Analysis: Hybrid Systems 14 (2015), 38-46. DOI 10.1016/j.nahs.2014.04.004 | MR 3228049
[7] Fowler, A. C., Gibbon, J. D., McGuinness, M. J.: The complex Lorenz equations. Physica D 4 (1982), 139-163. DOI 10.1016/0167-2789(82)90057-4 | MR 0653770 | Zbl 1194.37039
[8] Huang, T., Li, C., Liu, X.: Synchronization of chaotic systems with delay using intermittent linear state feedback. Chaos 18 (2008), 033122. DOI 10.1063/1.2967848 | MR 2464303
[9] Jiang, C., Zhang, F., Li, T.: Synchronization and antisynchronization of N-coupled fractional-order complex chaotic systems with ring connection. Math. Methods Appl. Sci. 41 (2018), 2625-2638. DOI 10.1002/mma.4765 | MR 3790715
[10] Li, C. D., Liao, X. F., Huang, T. W.: Exponential stabilization of chaotic systems with delay by periodically intermittent control. Chaos 17 (2007), 013103. DOI 10.1063/1.2430394 | MR 2319024
[11] Li, N., Sun, H., Zhang, Q.: Exponential synchronization of united complex dynamical networks with multi-links via adaptive periodically intermittent control. IET Control Theory Appl. 159 (2013), 1725-1736. DOI 10.1049/iet-cta.2013.0159 | MR 3115117
[12] Liang, Y., Wang, X.: Synchronization in complex networks with non-delay and delay couplings via intermittent control with two switched periods. Physica A 395 (2014), 434-444. DOI 10.1016/j.physa.2013.10.002 | MR 3133676
[13] Liu, X., Chen, T.: Synchronization of complex networks via aperiodically intermittent pinning control. IEEE Trans. Automat. Control 60 (2015), 3316-3321. DOI 10.1109/tac.2015.2416912 | MR 3432701
[14] Liu, X., Liu, Y., Zhou, L.: Quasi-synchronization of nonlinear coupled chaotic systems via aperiodically intermittent pinning control. Neurocomputing 173 (2016), 759-767. DOI 10.1016/j.neucom.2015.08.027
[15] Liu, L., Wang, Z., Huang, Z., Zhang, H.: Adaptive predefined performance control for IMO systems with unknown direction via generalized fuzzy hyperbolic model. IEEE Trans. Fuzzy Systems 25 (2007), 527-542. DOI 10.1109/tfuzz.2016.2566803
[16] Mahmoud, G. M., Bountis, T., Mahmoud, E. E.: Active control and global synchronization for complex Chen and Lü systems. Int. J. Bifurcat. Chaos 17 (2014), 4295-4308. DOI 10.1142/s0218127407019962 | MR 2394229
[17] Mahmoud, G., Mahmoud, E., Arafa, A.: On modified time delay hyperchaotic complex Lü system. Nonlinear Dynamics 80 (2015), 855-869. DOI 10.1007/s11071-015-1912-9 | MR 3324303
[18] Mahmoud, G., Mahmoud, E., Arafa, A.: Projective synchronization for coupled partially linear complex-variable systems with known parameters. Math. Methods Appl. Sci. 40 (2017), 1214-1222. DOI 10.1002/mma.4045 | MR 3610726
[19] Ning, C. Z., Haken, H.: Detuned lasers and the complex Lorenz equations: Subcritical and supercritical Hopf bifurcations. Phys. Rev. A 41 (1990), 3826-3837. DOI 10.1103/physreva.41.3826
[20] Ott, E., Grebogi, C., Yorke, J.: Controlling chaos. Phys. Rev. Lett. 64 (1990), 1196. DOI 10.1103/physrevlett.64.1196 | MR 1041523 | Zbl 0964.37502
[21] Pecora, L. M., Carroll, T. L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1990), 821-824. DOI 10.1103/physrevlett.64.821 | MR 1038263 | Zbl 1098.37553
[22] Qiu, J., Cheng, L., X, Chen, Lu, J., He, H.: Semi-periodically intermittent control for synchronization of switched complex networks: a mode-dependent average dwell time approach. Nonlinear Dynamics 83 (2016), 1757-1771. DOI 10.1007/s11071-015-2445-y | MR 3449506
[23] Starrett, J.: Control of chaos by occasional bang-bang. Phys. Rev. E 67 (2003), 036203. DOI 10.1103/physreve.67.036203
[24] Xia, W., Cao, J.: Pinning synchronization of delayed dynamical networks via periodically intermittent control. Chaos 19 (2009), 013120. DOI 10.1063/1.3071933 | MR 2513764
[25] Zheng, S.: Parameter identification and adaptive impulsive synchronization of uncertain complex-variable chaotic systems. Nonlinear Dynamics 74 (2013), 957-967. DOI 10.1007/s11071-013-1015-4 | MR 3127104 | Zbl 1306.34069
[26] Zheng, S.: Impulsive complex projective synchronization in drive-response complex coupled dynamical networks. Nonlinear Dynamics 79 (2015), 147-161. DOI 10.1007/s11071-014-1652-2 | MR 3302683
[27] Zheng, S.: Stability of uncertain impulsive complex-variable chaotic systems with time- varying delays. ISA Trans. 58 (2015), 20-26. DOI 10.1016/j.isatra.2015.05.016
[28] Zheng, S.: Further Results on the impulsive synchronization of uncertain complex-variable chaotic delayed systems. Complexity 21 (2016), 131-142. DOI 10.1002/cplx.21641 | MR 3508409
[29] Zheng, S.: Synchronization analysis of time delay complex-variable chaotic systems with discontinuous coupling. J. Franklin Inst. 353 (2016), 1460-1477. DOI 10.1016/j.jfranklin.2016.02.006 | MR 3472559
[30] Zheng, S.: Stability analysis of uncertain complex-variable delayed nonlinear systems via intermittent control with multiple switched periods. Kybernetika 54 (2018), 937-957. DOI 10.14736/kyb-2018-5-0937 | MR 3893129
[31] Zheng, S., Bi, Q., Cai, G.: Adaptive projective synchronization in complex networks with time-varying coupling delay. Phys. Lett. A 373 (2009), 1553-1559. DOI 10.1016/j.physleta.2009.03.001 | MR 2513416
[32] Zochowski, M.: Intermittent dynamical control. Physica D 145 (2000), 181-190. DOI 10.1016/s0167-2789(00)00112-3
Partner of
EuDML logo