Previous |  Up |  Next

Article

Keywords:
control; force; vision; robot manipulator; stability
Summary:
In this paper, a family of hybrid control algorithms is presented; where it is merged a free camera-calibration image-based control scheme and a direct force controller, both with the same priority level. The aim of this generalised hybrid controller is to regulate the robot-environment interaction into a two-dimensional task-space. The design of the proposed control structure takes into account most of the dynamic effects present in robot manipulators whose inputs are torque signals. As examples of this generalised structure of hybrid force/vision controllers, a linear proportional-derivative structure and a nonlinear proportional-derivative one (based on the hyperbolic tangent function) are presented. The corresponding stability analysis, using Lyapunov's direct method and invariance theory, is performed to proof the asymptotic stability of the equilibrium vector of the closed-loop system. Experimental tests of the control scheme are presented and a suitable performance is observed in all the cases. Unlike most of the previously presented hybrid schemes, the control structure proposed herein achieves soft contact forces without overshoots, fast convergence of force and position error signals, robustness of the controller in the face of some uncertainties (such as camera rotation), and safe operation of the robot actuators when saturating functions (non-linear case) are used in the mathematical structure. This is one of the first works to propose a generalized structure of hybrid force/vision control that includes a closed loop stability analysis for torque-driven robot manipulators.
References:
[1] Aghaie, S., Khanmohammadi, S., Moghadam-Fard, H., Samadi, F.: Adaptive vision-based control of robot manipulators using the interpolating polynomial. Trans. Inst. Meas. Control 36 (2014), 6, 837-844. DOI 10.1177/0142331214523307
[2] Bdiwi, M., Winkler, A., Suchy, J., Zschocke, G.: Traded and shared vision-force robot control for improved impact control. In: Proc. of the 18th IEEE International Multi-Conference on Systems, Signals and Devices, Sousse 2011, pp. 154-159. DOI 10.1109/ssd.2011.5981425
[3] Carelli, R., Oliva, E., Soria, C., Nasisi, O.: Combined force and visual control of an industrial robot. Robotica 22 (2004), 2, 163-171. DOI 10.1017/s0263574703005423
[4] Chávez-Olivares, C., Reyes-Cortés, F., González-Galván, E.: On explicit force regulation with active velocity damping for robot manipulators. Automatika 56(4) (2015), 478-490. DOI 10.1080/00051144.2015.11828661
[5] Chávez-Olivares, C., Reyes-Cortés, F., González-Galván, E.: On stiffness regulators with dissipative injection for robot manipulators. Int. J. Adv. Rob. Syst. 12 (2015), 6, 65. DOI 10.5772/60054
[6] Chiaverini, S., Sciavicco, L.: The parallel approach to force/position control of robotic manipulators. IEEE Trans. Rob. Autom. 9 (1993), 4, 361-373. DOI 10.1109/70.246048
[7] Corke, P.: Robotics, Vision and Control: Fundamental Algorithms in MATLAB. Springer-Verlag, London 2017. DOI 10.1007/978-3-319-54413-7
[8] Hogan, N.: Stable execution of contact tasks using impedance control. In: Proc. of the IEEE International Conference on Robotics and Automation, Raleigh 1987, pp. 1047-1054. DOI 10.1109/robot.1987.1087854
[9] Huang, Y., Zhang, X., Chen, X., Ota, J.: Vision-guided peg-in-hole assembly by baxter robot. Adv. Mech. Eng. 9 (2017), 12, 168781401774807. DOI 10.1177/1687814017748078
[10] Hutchinson, S., Hager, G. D., Corke, P.I.: A tutorial on visual servo control. IEEE Trans. Rob. Autom. 12 (1996), 5, 651-670. DOI 10.1109/70.538972
[11] Kelly, R.: Robust asymptotically stable visual servoing of planar robots. IEEE Trans. Rob. Autom. 12 (1996), 5, 759-766. DOI 10.1109/70.538980
[12] Kelly, R., Santibáñez-Dávila, V., Loría-Perez, J. A.: Control of Robot Manipulators in Joint Space. Springer-Verlag, London 2006.
[13] Li, X., Liu, Y.H., Yu, H.: Iterative learning impedance control for rehabilitation robots driven by series elastic actuators. Automatica 90 (2018), 1-7. DOI 10.1016/j.automatica.2017.12.031 | MR 3764378
[14] Lippiello, V., Siciliano, B., Villani, L.: A position-based visual impedance control for robot manipulators. In: Proc. of the IEEE International Conference on Robotics and Automation, Roma 2007, pp. 2068-2073. DOI 10.1109/robot.2007.363626
[15] Lippiello, V., Siciliano, B., Villani, L.: Position-based visual servoing in industrial multirobot cells using a hybrid camera configuration. IEEE Trans. Rob. 23 (2007), 1, 73-86. DOI 10.1109/tro.2006.886832
[16] Long, P., Khalil, W., Martinet, P.: Robotic cutting of soft materials using force control and image moments. In: Proc. of the 13th International Conference on Control Automation Robotics and Vision, Singapore 2014, pp. 474-479. DOI 10.1109/icarcv.2014.7064351
[17] Mezouar, Y., Prats, M., Martinet, P.: External hybrid vision/force control. In: Proc. of the IEEE International Conference on Advanced Robotics, Jeju 2007, pp. 170-175.
[18] Muñoz-Vázquez, A.J., Parra-Vega, V., Sánchez-Orta, A., Ruiz-Sánchez, F.: A novel force-velocity field for object manipulation with a model-free cooperative controller. Trans. Inst. Meas. Control 41 (2019), 2, 573-581. DOI 10.1177/0142331218762272
[19] Mut, V., Nasisi, O., Carelli, R., Kuchen, B.: Tracking robust impedance robot control with visual feedback. In: Proc. of the 6th IFAC Symposium on Robot Control, Vienna 2000, pp. 69-74. DOI 10.1016/s1474-6670(17)37907-7
[20] Nammoto, T., Kosuge, K., Hashimoto, K.: Model-based compliant motion control scheme for assembly tasks using vision and force information. In: Proc. of the IEEE International Conference on Automation Science and Engineering, Wisconsin 2013, pp. 948-953. DOI 10.1109/coase.2013.6653912
[21] Nelson, B. J., Khosla, P. K.: Force and vision resolvability for assimilating disparate sensory feedback. IEEE Trans. Rob. Autom. 12 (1996), 5, 714-731. DOI 10.1109/70.538976
[22] Ortenzi, V., Marturi, N., Mistry, M., Kuo, J., Stolkin, R.: Vision-based framework to estimate robot configuration and kinematic constraints. IEEE/ASME Trans. Mechatron. 23 (2018), 5, 2402-2412. DOI 10.1109/tmech.2018.2865758
[23] Prats, M., Martinet, P., Pobil, A. P. Del, Lee, S.: Robotic execution of everyday tasks by means of external vision/force control. Intell. Serv. Robot. 1 (2008), 3, 253-266. DOI 10.1007/s11370-007-0008-x
[24] Rodriguez-Angeles, A., Vazquez-Chavez, L.F.: Bio-inspired decentralized autonomous robot mobile navigation control for multi agent systems. Kybernetika 54 (2018), 1, 135-154. DOI 10.14736/kyb-2018-1-0135 | MR 3780960
[25] Takegaki, M., Arimoto, S.: A new feedback method for dynamic control of manipulators. ASME J. Dyn. Syst. Meas. Control 103 (1981), 119-125. DOI 10.1115/1.3139651 | Zbl 0473.93012
[26] Wang, H., Xie, Y.: Adaptive jacobian position/force tracking control of free-flying manipulators. Rob. Auton. Syst. 57 (2009), 2, 173-181. DOI 10.1016/j.robot.2008.05.003
[27] Yu, L., Fei, S., Huang, J., Li, Y., Yang, G., Sun, L.: Robust neural network control of robotic manipulators via switching strategy. Kybernetika 51 (2015), 2, 309-320. DOI 10.14736/kyb-2015-2-0309 | MR 3350564
[28] Yüksel, T.: An intelligent visual servo control system for quadrotors. Trans. Inst. Meas. Control 41 (2019), 1, 3-13. DOI 10.1177/0142331217751599
[29] Zhaik, C.: Sweep coverage of discrete time multi-robot networks with general topologies. Kybernetika 50 (2014), 1, 19-31. DOI 10.14736/kyb-2014-1-0019 | MR 3195002
Partner of
EuDML logo