[3] Blyth, T. S., Fang, J., Wang, L.-B.:
The strong endomorphism kernel property in distributive double $p$-algebras. Sci. Math. Jpn. 76 (2013), 227-234.
MR 3330070 |
Zbl 1320.06009
[6] Fang, G., Fang, J.:
The strong endomorphism kernel property in distributive $p$-algebras. Southeast Asian Bull. Math. 37 (2013), 491-497.
MR 3134913 |
Zbl 1299.06017
[8] Gaitán, H., Cortés, Y. J.:
The endomorphism kernel property in finite Stone algebras. JP J. Algebra Number Theory Appl. 14 (2009), 51-64.
MR 2548439 |
Zbl 1191.06007
[9] Guričan, J.:
The endomorphism kernel property for modular $p$-algebras and Stone lattices of order $n$. JP J. Algebra Number Theory Appl. 25 (2012), 69-90.
MR 2976467 |
Zbl 1258.06002
[10] Guričan, J.:
A note on the endomorphism kernel property. JP J. Algebra Number Theory Appl. 33 (2014), 133-139.
Zbl 1302.08004
[11] Guričan, J.:
Strong endomorphism kernel property for Brouwerian algebras. JP J. Algebra Number Theory Appl. 36 (2015), 241-258.
Zbl 1333.06025
[15] Jakubíková-Studenovská, D., Pócs, J.:
Monounary Algebras. Pavol Josef Šafárik University, Košice (2009).
Zbl 1181.08001
[24] Novotný, M., Kopeček, O., Chvalina, J.:
Homomorphic Transformations: Why and Possible Ways to How. Masaryk University, Brno (2012).
DOI 10.5817/cz.muni.m210-5831-2012