Previous |  Up |  Next

Article

Keywords:
monounary algebra; endomorphism; congruence; kernel
Summary:
An algebra $\cal A$ is said to have the endomorphism kernel property (EKP) if every congruence on $\cal A$ is the kernel of some endomorphism of $\cal A$. Three classes of monounary algebras are dealt with. For these classes, all monounary algebras with EKP are described.
References:
[1] Araújo, J., Konieczny, J.: Centralizers in the full transformation semigroup. Semigroup Forum 86 (2013), 1-31. DOI 10.1007/s00233-012-9424-0 | MR 3016258 | Zbl 1267.20090
[2] Blyth, T. S., Fang, J., Silva, H. J.: The endomorphism kernel property in finite distributive lattices and De Morgan algebras. Commun. Algebra 32 (2004), 2225-2242. DOI 10.1081/agb-120037216 | MR 2100466 | Zbl 1060.06018
[3] Blyth, T. S., Fang, J., Wang, L.-B.: The strong endomorphism kernel property in distributive double $p$-algebras. Sci. Math. Jpn. 76 (2013), 227-234. MR 3330070 | Zbl 1320.06009
[4] Blyth, T. S., Silva, H. J.: The strong endomorphism kernel property in Ockham algebras. Commun. Algebra 36 (2008), 1682-1694. DOI 10.1080/00927870801937240 | MR 2424259 | Zbl 1148.06005
[5] Černegová, M., Jakubíková-Studenovská, D.: Reconstructability of a monounary algebra from its second centralizer. Commun. Algebra 45 (2017), 4656-4666. DOI 10.1080/00927872.2016.1276927 | MR 3670337 | Zbl 06812755
[6] Fang, G., Fang, J.: The strong endomorphism kernel property in distributive $p$-algebras. Southeast Asian Bull. Math. 37 (2013), 491-497. MR 3134913 | Zbl 1299.06017
[7] Fang, J., Sun, Z.-J.: Semilattices with the strong endomorphism kernel property. Algebra Univers. 70 (2013), 393-401. DOI 10.1007/s00012-013-0254-z | MR 3127981 | Zbl 1305.06004
[8] Gaitán, H., Cortés, Y. J.: The endomorphism kernel property in finite Stone algebras. JP J. Algebra Number Theory Appl. 14 (2009), 51-64. MR 2548439 | Zbl 1191.06007
[9] Guričan, J.: The endomorphism kernel property for modular $p$-algebras and Stone lattices of order $n$. JP J. Algebra Number Theory Appl. 25 (2012), 69-90. MR 2976467 | Zbl 1258.06002
[10] Guričan, J.: A note on the endomorphism kernel property. JP J. Algebra Number Theory Appl. 33 (2014), 133-139. Zbl 1302.08004
[11] Guričan, J.: Strong endomorphism kernel property for Brouwerian algebras. JP J. Algebra Number Theory Appl. 36 (2015), 241-258. Zbl 1333.06025
[12] Guričan, J., Ploščica, M.: The strong endomorphism kernel property for modular p-algebras and for distributive lattices. Algebra Univers. 75 (2016), 243-255. DOI 10.1007/s00012-016-0370-7 | MR 3515400 | Zbl 1348.06008
[13] Halušková, E.: Strong endomorphism kernel property for monounary algebras. Math. Bohem. 143 (2018), 161-171. DOI 10.21136/mb.2017.0056-16 | MR 3831484 | Zbl 06890412
[14] Jakubíková-Studenovská, D., Pócs, J.: Cardinality of retracts of monounary algebras. Czech. Math. J. 58 (2008), 469-479. DOI 10.1007/s10587-008-0028-5 | MR 2411102 | Zbl 1174.08303
[15] Jakubíková-Studenovská, D., Pócs, J.: Monounary Algebras. Pavol Josef Šafárik University, Košice (2009). Zbl 1181.08001
[16] Jakubíková-Studenovská, D., Potpinková, K.: The endomorphism spectrum of a monounary algebra. Math. Slovaca 64 (2014), 675-690. DOI 10.2478/s12175-014-0233-7 | MR 3227764 | Zbl 1332.08003
[17] Jakubíková-Studenovská, D., Šuličová, M.: Centralizers of a monounary algebra. Asian-Eur. J. Math. 8 (2015), Article No. 1550007, 12 pages. DOI 10.1142/s1793557115500072 | MR 3322550 | Zbl 1315.08003
[18] Jakubíková-Studenovská, D., Šuličová, M.: Green's relations in the commutative centralizers of monounary algebras. Demonstr. Math. 48 (2015), 536-545. DOI 10.1515/dema-2015-0038 | MR 3430887 | Zbl 1343.08001
[19] Jónsson, B.: Topics in Universal Algebra. Lecture Notes in Mathematics 250. Springer, Berlin (1972). DOI 10.1007/bfb0058648 | MR 0345895 | Zbl 0225.08001
[20] Konieczny, J.: Green's relations and regularity in centralizers of permutations. Glasg. Math. J. 41 (1999), 45-57. DOI 10.1017/s0017089599970301 | MR 1689659 | Zbl 0924.20049
[21] Konieczny, J.: Second centralizers of partial transformations. Czech. Math. J. 51 (2001), 873-888. DOI 10.1023/a:1013729316147 | MR 1864048 | Zbl 1003.20053
[22] Konieczny, J.: Centralizers in the semigroup of injective transformations on an infinite set. Bull. Aust. Math. Soc. 82 (2010), 305-321. DOI 10.1017/s0004972710000304 | MR 2685154 | Zbl 1205.20063
[23] Konieczny, J.: Infinite injective transformations whose centralizers have simple structure. Cent. Eur. J. Math. 9 (2011), 23-35. DOI 10.2478/s11533-010-0086-4 | MR 2753879 | Zbl 1214.20057
[24] Novotný, M., Kopeček, O., Chvalina, J.: Homomorphic Transformations: Why and Possible Ways to How. Masaryk University, Brno (2012). DOI 10.5817/cz.muni.m210-5831-2012
[25] Pitkethly, J., Davey, B.: Dualisability. Unary Algebras and Beyond. Advances in Mathematics 9. Springer, New York (2005). DOI 10.1007/0-387-27570-3 | MR 2161626 | Zbl 1085.08001
[26] Popov, B. V., Kovaleva, O. V.: On a characterization of monounary algebras by their endomorphism semigroups. Semigroup Forum 73 (2006), 444-456. DOI 10.1007/s00233-006-0635-0 | MR 2279911 | Zbl 1115.08005
[27] Pozdnyakova, I. V.: Semigroups of endomorphisms of some infinite monounary algebras. Mat. Metody Fiz.-Mekh. Polya 55 Russian (2012), 29-38 translated in J. Math. Sci. 190 658-668. DOI 10.1007/s10958-013-1278-9 | MR 3012027 | Zbl 1274.08023
Partner of
EuDML logo