Previous |  Up |  Next

Article

Keywords:
quasigroup; loop; prolongation; involutory loop; associative triple; maximally nonassociative
Summary:
A loop of order $n$ possesses at least $3n^2-3n+1$ associative triples. However, no loop of order $n>1$ that achieves this bound seems to be known. If the loop is involutory, then it possesses at least $3n^2-2n$ associative triples. Involutory loops with $3n^2-2n$ associative triples can be obtained by prolongation of certain maximally nonassociative quasigroups whenever $n-1$ is a prime greater than or equal to $13$ or $n-1=p^{2k}$, $p$ an odd prime. For orders $n\le 9$ the minimum number of associative triples is reported for both general and involutory loops, and the structure of the corresponding loops is described.
References:
[1] Dickson L. E.: On finite algebras. Nachr. Ges. Wiss. Göttingen (1905), 358–393.
[2] Drápal A., Lisoněk P.: Maximal nonassociativity via nearfields. Finite Fields Appl. 62 (2020), 101610, 27 pages. MR 4032787
[3] Drápal A., Valent V.: Extreme nonassociativity in order nine and beyond. J. Combin. Des. 28 (2020), no. 1, 33–48. DOI 10.1002/jcd.21679 | MR 4033745
[4] Drápal A., Wanless I. M.: Maximally nonassociative quasigroups via quadratic orthomorphisms. accepted in Algebr. Comb., available at arXiv:1912.07040v1 [math.CO] (2019), 13 pages.
[5] Evans A. B.: Orthogonal Latin Squares Based on Groups. Developments in Mathematics, 57, Springer, Cham, 2018. DOI 10.1007/978-3-319-94430-2_2 | MR 3837138
[6] Kepka T.: A note on associative triples of elements in cancellation groupoids. Comment. Math. Univ. Carolin. 21 (1980), no. 3, 479–487. MR 0590128
[7] Wanless I. M.: Diagonally cyclic Latin squares. European J. Combin. 25 (2004), no. 3, 393–413. DOI 10.1016/j.ejc.2003.09.014 | MR 2036476
[8] Wanless I. M.: Atomic Latin squares based on cyclotomic orthomorphisms. Electron. J. Combin. 12 (2005), Research Paper 22, 23 pages. DOI 10.37236/1919 | MR 2134185
Partner of
EuDML logo