Previous |  Up |  Next

Article

Keywords:
Lie algebras; Leibniz algebras; $A$-algebras; Frattini ideal; solvable; nilpotent; completely solvable; metabelian; monolithic; cyclic Leibniz algebras
Summary:
A finite-dimensional Lie algebra is called an $A$-algebra if all of its nilpotent subalgebras are abelian. These arise in the study of constant Yang-Mills potentials and have also been particularly important in relation to the problem of describing residually finite varieties. They have been studied by several authors, including Bakhturin, Dallmer, Drensky, Sheina, Premet, Semenov, Towers and Varea. In this paper we establish generalisations of many of these results to Leibniz algebras.
References:
[1] Bakhturin, Yu.A., Semenov, K.N.: On the finite approximability of solvable varieties of Lie algebras. Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 6, 1986, 59-61, Lomonosov Moscow State University, English transl. in Moscow University Mathematics Bulletin 41 (1986), 49-51. MR 0872075
[2] Barnes, D.W.: Some theorems on Leibniz algebras. Communications in Algebra, 39, 7, 2011, 2463-2472, DOI 10.1080/00927872.2010.489529 | MR 2821724 | Zbl 1268.17001
[3] Bloh, A.: On a generalization of Lie algebra notion. USSR Doklady, 165, 3, 1965, 471-473, MR 0193114
[4] Dallmer, E.: On Lie algebras all nilpotent subalgebras of which are Abelian. Journal of Mathematical Physics, 40, 8, 1999, 4151-4156, American Institute of Physics, MR 1702410
[5] Drenski, V.S.: Solvable Lie $A$-algebras. Serdica, 9, 1983, 132-135, MR 0731837
[6] Jacobson, N.: Lie Algebras. 1962, Interscience Publishers, New York-London, Interscience Tracts on Pure and Applied Mathematics, no. 10. MR 0143793 | Zbl 0121.27504
[7] Loday, J.L.: Une version non commutative des algèbres de Lie: les algèbres de Leibniz. L'Enseignement Mathématique, 39, 3-4, 1993, 269-293, MR 1252069
[8] Loday, J.-L., Pirashvili, T.: Universal enveloping algebras of Leibniz algebras and (co)homology. Mathematische Annalen, 296, 1, 1993, 139-158, Springer-Verlag, DOI 10.1007/BF01445099 | MR 1213376
[9] Premet, A.A.: Inner ideals in modular Lie algebras. Vestsī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk, 5, 1986, 11-15, MR 0876665
[10] Premet, A.A.: Lie algebras without strong degeneration. Mathematics of the USSR - Sbornik, 57, 1, 1987, 151-164, IOP Publishing, DOI 10.1070/SM1987v057n01ABEH003060 | MR 0830100
[11] Premet, A.A., Semenov, K.N.: Varieties of residually finite Lie algebras. Mathematics of the USSR - Sbornik, 65, 1, 1990, 109-118, IOP Publishing, DOI 10.1070/SM1990v065n01ABEH001142 | MR 0965882
[12] Ray, C.B., Bosko-Dunbar, L., Hedges, A., Hird, J.T., Stagg, K., Stitzinger, E.: A Frattini theory for Leibniz algebras. Communications in Algebra, 41, 4, 2013, 1547-1557, Taylor & Francis, DOI 10.1080/00927872.2011.643844 | MR 3044424
[13] Ray, C.B., Combs, A., Gin, N., Hedges, A., Hird, J.T., Zack, L.: Nilpotent Lie and Leibniz algebras. Communications in Algebra, 42, 6, 2014, 2404-2410, Taylor & Francis, DOI 10.1080/00927872.2012.717655 | MR 3169714
[14] Schafer, R.D.: An introduction to nonassociative algebras (Pure & Applied Mathematics). 1966, Academic Press, New York, MR 0210757
[15] Semenov, K.N.: Conditions for a variety and a quasivariety generated by a finite Lie algebra to coincide (Russian. English, Russian summaries), Abelian Groups and modules. Abelian Groups and modules, Tomsk. Gos. Univ. Tomsk, 10, 1991, 134-138, MR 1197373
[16] Sheina, G.V.: Varieties of metabelian Lie $A$-algebras. I. Vestnik Moskov. Univ. Ser. I Mat. Mekh., 4, 1977, 37-46, English transl. in Moscow University Mathematics Bulletin 32 (1977), 28-35.. MR 0486027
[17] Sheina, G.V.: Varieties of metabelian Lie $A$-algebras. II. Vestnik Moskov. Univ. Ser. I Mat. Mekh., 3, 1978, 52-59, English transl. in Moscow University Mathematics Bulletin 33 (1978), 48-54.. MR 0486028
[18] Sheina, G.V.: Metabelian varieties Lie $A$-algebras. Russian. Uspekhi Matematicheskikh Nauk, 33, 1978, 209-210, MR 0486029
[19] Towers, D.A.: A Frattini theory for algebras. Proceedings of the London Mathematical Society, 3, 3, 1973, 440-462, Narnia, DOI 10.1112/plms/s3-27.3.440 | MR 0427393
[20] Towers, D.A.: Solvable Lie $A$-algebras. Journal of Algebra, 340, 1, 2011, 1-12, Elsevier, DOI 10.1016/j.jalgebra.2011.06.003 | MR 2813558
[21] Towers, D.A., Varea, V.R.: Elementary Lie algebras and Lie $A$-algebras. Journal of Algebra, 312, 2, 2007, 891-901, Elsevier, DOI 10.1016/j.jalgebra.2006.11.034 | MR 2333190
[22] Towers, D.A., Varea, V.R.: Further results on elementary Lie algebras and Lie $A$-algebras. Communications in Algebra, 41, 4, 2013, 1432-1441, Taylor & Francis, DOI 10.1080/00927872.2011.643667 | MR 3044418
[23] Winter, D.J.: Abstract Lie Algebras. 1972, M.I.T. Press, Cambridge, Mass., MR 0332905
Partner of
EuDML logo