[1] Allison, B.:
A class of nonassociative algebras with involution containing the class of Jordan algebras. Mathematische Annalen, 237, 2, 1978, 133-156,
DOI 10.1007/BF01351677 |
MR 0507909
[4] Martín, A. Calderón, Ouaridi, A. Fernández, Kaygorodov, I.:
The classification of $2$-dimensional rigid algebras. Linear and Multilinear Algebra, 68, 4, 2020, 828-844,
DOI 10.1080/03081087.2018.1519009 |
MR 4072782
[5] Cantarini, N., Kac, V.:
Classification of linearly compact simple rigid superalgebras. International Mathematics Research Notices, 17, 2010, 3341-3393,
MR 2680276
[8] Jacobson, N.:
Structure and Representations of Jordan Algebras. 1969, American Mathematical Society, Providence, R.I,
MR 0251099
[10] Kantor, I.:
Graded Lie algebras (Russian). Trudy Seminara po Vektornomu i Tenzornomu Analizu s ikh Prilozheniyami k Geometrii, Mekhanike i Fizike, 15, 1970, 227-266,
MR 0297827
[11] Kantor, I.:
Certain generalizations of Jordan algebras (Russian). Trudy Seminara po Vektornomu i Tenzornomu Analizu s ikh Prilozheniyami k Geometrii, Mekhanike i Fizike, 16, 1972, 407-499,
MR 0321986
[12] Kantor, I.:
A universal graded Lie superalgebra (Russian). Trudy Seminara po Vektornomu i Tenzornomu Analizu s ikh Prilozheniyami k Geometrii, Mekhanike i Fizike, 20, 1981, 162-175,
MR 0622014
[14] Kantor, I.:
Some problems in $\mathfrak {L}$-functor theory (Russian). Algebra and Logic, 16, 1989, 54-75,
MR 1043625
[18] Kaygorodov, I., Khrypchenko, M., Popov, Yu.:
The algebraic and geometric classification of nilpotent terminal algebras. arXiv:1909.00358, 2019,
MR 4173993
[19] Kaygorodov, I., Khudoyberdiyev, A., Sattarov, A.:
One generated nilpotent terminal algebras. Communications in Algebra, 48, 10, 2020, 4355-4390,
DOI 10.1080/00927872.2020.1761979 |
MR 4127122
[20] Kaygorodov, I., Lopatin, A., Popov, Yu.:
Conservative algebras of $2$-dimensional algebras. Linear Algebra and its Applications, 486, 2015, 255-274,
DOI 10.1016/j.laa.2015.08.011 |
MR 3401761
[21] Kaygorodov, I., Popov, Yu., Pozhidaev, A.:
The universal conservative superalgebra. Communications in Algebra, 47, 10, 2019, 4064-4074,
DOI 10.1080/00927872.2019.1576189 |
MR 3975987
[22] Kaygorodov, I., Volkov, Yu.:
Conservative algebras of $2$-dimensional algebras, II. Communications in Algebra, 45, 8, 2017, 3413-3421,
MR 3609349
[23] Loos, O.:
Jordan Pairs, Lecture Notes in Mathematics. 1975, Springer Verlag, Berlin,
MR 0444721
[25] Meyberg, K.:
Lectures on Algebras and Triple Systems. 1972, Lecture notes, University of Virginia, Charlottesville,
MR 0340353