Previous |  Up |  Next

Article

Keywords:
Conservative algebra; Jordan algebra; Tits-Koecher-Kantor construction; terminal algebra.
Summary:
We give a survey of results obtained on the class of conservative algebras and superalgebras, as well as on their important subvarieties, such as terminal algebras.
References:
[1] Allison, B.: A class of nonassociative algebras with involution containing the class of Jordan algebras. Mathematische Annalen, 237, 2, 1978, 133-156, DOI 10.1007/BF01351677 | MR 0507909
[2] Allison, B., Hein, W.: Isotopes of some nonassociative algebras with involution. Journal of Algebra, 69, 1981, 120-142, DOI 10.1016/0021-8693(81)90132-0 | MR 0613862
[3] Birkhoff, G.: On the structure of abstract algebras. Mathematical Proceedings of the Cambridge Philosophical Society, 31, 4, 1935, 433-454, DOI 10.1017/S0305004100013463 | Zbl 0013.00105
[4] Martín, A. Calderón, Ouaridi, A. Fernández, Kaygorodov, I.: The classification of $2$-dimensional rigid algebras. Linear and Multilinear Algebra, 68, 4, 2020, 828-844, DOI 10.1080/03081087.2018.1519009 | MR 4072782
[5] Cantarini, N., Kac, V.: Classification of linearly compact simple rigid superalgebras. International Mathematics Research Notices, 17, 2010, 3341-3393, MR 2680276
[6] Cantarini, N., Kac, V.: Classification of simple linearly compact $n$-Lie superalgebras. Communications in Mathematical Physics, 298, 3, 2010, 833-853, DOI 10.1007/s00220-010-1049-0 | MR 2670929 | Zbl 1232.17008
[7] Cantarini, N., Kac, V.: Classification of simple linearly compact $N=6$ 3-algebras. Transformation Groups, 16, 3, 2011, 649-671, DOI 10.1007/s00031-011-9143-8 | MR 2827038
[8] Jacobson, N.: Structure and Representations of Jordan Algebras. 1969, American Mathematical Society, Providence, R.I, MR 0251099
[9] Kac, V.: Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras. Communications in Algebra, 13, 5, 1977, 1375-1400, DOI 10.1080/00927877708822224 | MR 0498755
[10] Kantor, I.: Graded Lie algebras (Russian). Trudy Seminara po Vektornomu i Tenzornomu Analizu s ikh Prilozheniyami k Geometrii, Mekhanike i Fizike, 15, 1970, 227-266, MR 0297827
[11] Kantor, I.: Certain generalizations of Jordan algebras (Russian). Trudy Seminara po Vektornomu i Tenzornomu Analizu s ikh Prilozheniyami k Geometrii, Mekhanike i Fizike, 16, 1972, 407-499, MR 0321986
[12] Kantor, I.: A universal graded Lie superalgebra (Russian). Trudy Seminara po Vektornomu i Tenzornomu Analizu s ikh Prilozheniyami k Geometrii, Mekhanike i Fizike, 20, 1981, 162-175, MR 0622014
[13] Kantor, I.: On an extension of a class of Jordan algebras. Algebra and Logic, 28, 2, 1989, 117-121, DOI 10.1007/BF01979375 | MR 1065647
[14] Kantor, I.: Some problems in $\mathfrak {L}$-functor theory (Russian). Algebra and Logic, 16, 1989, 54-75, MR 1043625
[15] Kantor, I.: Terminal trilinear operations. Algebra and Logic, 28, 1, 1989, 25-40, DOI 10.1007/BF01980606 | MR 1061856
[16] Kantor, I.: An universal conservative algebra. Siberian Mathematical Journal, 31, 3, 1990, 388-395, DOI 10.1007/BF00970345 | MR 1084759
[17] Kaygorodov, I.: On the Kantor product. Journal of Algebra and Its Applications, 16, 5, 2017, DOI 10.1142/S0219498817501675 | MR 3661634
[18] Kaygorodov, I., Khrypchenko, M., Popov, Yu.: The algebraic and geometric classification of nilpotent terminal algebras. arXiv:1909.00358, 2019, MR 4173993
[19] Kaygorodov, I., Khudoyberdiyev, A., Sattarov, A.: One generated nilpotent terminal algebras. Communications in Algebra, 48, 10, 2020, 4355-4390, DOI 10.1080/00927872.2020.1761979 | MR 4127122
[20] Kaygorodov, I., Lopatin, A., Popov, Yu.: Conservative algebras of $2$-dimensional algebras. Linear Algebra and its Applications, 486, 2015, 255-274, DOI 10.1016/j.laa.2015.08.011 | MR 3401761
[21] Kaygorodov, I., Popov, Yu., Pozhidaev, A.: The universal conservative superalgebra. Communications in Algebra, 47, 10, 2019, 4064-4074, DOI 10.1080/00927872.2019.1576189 | MR 3975987
[22] Kaygorodov, I., Volkov, Yu.: Conservative algebras of $2$-dimensional algebras, II. Communications in Algebra, 45, 8, 2017, 3413-3421, MR 3609349
[23] Loos, O.: Jordan Pairs, Lecture Notes in Mathematics. 1975, Springer Verlag, Berlin, MR 0444721
[24] Martínez, C., Zelmanov, E.: Representation theory for Jordan superalgebras I. Transactions of the American Mathematical Society, 362, 2, 2010, 815-846, DOI 10.1090/S0002-9947-09-04883-1 | MR 2551507
[25] Meyberg, K.: Lectures on Algebras and Triple Systems. 1972, Lecture notes, University of Virginia, Charlottesville, MR 0340353
[26] Popov, Yu.: Representations of noncommutative Jordan superalgebras I. Journal of Algebra, 544, 2020, 329-390, DOI 10.1016/j.jalgebra.2019.09.018 | MR 4026491
[27] Pozhidaev, A., Shestakov, I.: Structurable superalgebras of Cartan type. Journal of Algebra, 323, 2010, 3230-3251, DOI 10.1016/j.jalgebra.2010.04.003 | MR 2639975
[28] Smirnov, O.: Simple and semisimple structurable algebras. Algebra and Logic, 29, 5, 1990, 377-379, DOI 10.1007/BF02215286 | MR 1155272
Partner of
EuDML logo