Previous |  Up |  Next

Article

Keywords:
Sidon set; additive basis; polynomial rings over finite fields
Summary:
Let $\mathbb {F}_q[t]$ denote the polynomial ring over $\mathbb {F}_q$, the finite field of $q$ elements. Suppose the characteristic of $\mathbb {F}_q$ is not $2$ or $3$. We prove that there exist infinitely many $N \in \mathbb {N}$ such that the set $\{ f \in \mathbb {F}_q[t] \colon \deg f < N \}$ contains a Sidon set which is an additive basis of order $3$.
References:
[1] Cilleruelo, J.: Combinatorial problems in finite fields and Sidon sets. Combinatorica 32 (2012), 497-511. DOI 10.1007/s00493-012-2819-4 | MR 3004806 | Zbl 1291.11025
[2] Cilleruelo, J.: On Sidon sets and asymptotic bases. Proc. Lond. Math. Soc. (3) 111 (2015), 1206-1230. DOI 10.1112/plms/pdv050 | MR 3477233 | Zbl 1390.11026
[3] Deshouillers, J.-M., Plagne, A.: A Sidon basis. Acta Math. Hung. 123 (2009), 233-238. DOI 10.1007/s10474-008-8097-3 | MR 2500912 | Zbl 1200.11008
[4] Erdős, P., Sárközy, A., Sós, V. T.: On additive properties of general sequences. Discrete Math. 136 (1994), 75-99. DOI 10.1016/0012-365X(94)00108-U | MR 1313282 | Zbl 0818.11009
[5] Erdős, P., Sárközy, A., Sós, V. T.: On sum sets of Sidon sets I. J. Number Theory 47 (1994), 329-347. DOI 10.1006/jnth.1994.1040 | MR 1278402 | Zbl 0811.11014
[6] Erdős, P., Turán, P.: On a problem of Sidon in additive number theory, and on some related problems. J. Lond. Math. Soc. 16 (1941), 212-215. DOI 10.1112/jlms/s1-16.4.212 | MR 0006197 | Zbl 0061.07301
[7] Kiss, S. Z.: On Sidon sets which are asymptotic basis. Acta Math. Hung. 128 (2010), 46-58. DOI 10.1007/s10474-010-9155-1 | MR 2665798 | Zbl 1218.11012
[8] Kiss, S. Z., Rozgonyi, E., Sándor, C.: On Sidon sets which are asymptotic bases of order 4. Funct. Approximatio, Comment. Math. 51 (2014), 393-413. DOI 10.7169/facm/2014.51.2.10 | MR 3282635 | Zbl 1353.11016
[9] Konyagin, S. V., Lev, V. F.: The Erdős-Turán problem in infinite groups. Additive Number Theory Springer, New York (2010), 195-202. DOI 10.1007/978-0-387-68361-4_14 | MR 2744757 | Zbl 1271.11011
[10] Lang, S., Weil, A.: Number of points of varieties in finite fields. Am. J. Math. 76 (1954), 819-827. DOI 10.2307/2372655 | MR 0065218 | Zbl 0058.27202
[11] O'Bryant, K.: A complete annotated bibliography of work related to Sidon sequences. Electron. J. Comb. DS11 (2004), 39 pages. Zbl 1142.11312
Partner of
EuDML logo