[1] Boyd, S.:
Linear Matrix Inequality in Systems and Control Theory. SIAM, Philadelphia 1994.
MR 1284712
[2] Chen, P., Fei, M. R.:
An improved result on the stability of uncertain TCS fuzzy systems with interval time-varying delay. Fuzzy Sets Systems 212 (2013), 97-109.
DOI |
MR 2996153
[3] Chen, P., Jin, Z.:
Event-triggered output-feedback $ H_{\infty}$ control for networked control systems with time-varying sampling. IET Control Theory Appl. 9 (2015), 1384-1391.
DOI |
MR 3202366
[4] Chen, P., Jin, Z.:
Delay-distribution-dependent load frequency control of power systems with probabilistic interval delays. IEEE Trans. Power Systems 31 (2016), 3309-3317.
DOI
[5] Chen, P., Yang, T.:
Event-triggered communication and $ H_{\infty}$ control co-design for networked control systems. Automatica 49 (2013), 1326-1332.
DOI |
MR 3044010
[6] Ding, L., Han, Q., Zhang, X.:
Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an event-triggered communication mechanism. IEEE Trans. Industr. Inform. 15 (2019), 3910-3922.
DOI
[7] Donkers, M., Heemels, W.:
Output-based event-triggered control with guaranteed $\mathcal{L}_\infty$ gain and improved and decentralized event-triggering. IEEE Trans. Automat. Control 57 (2012), 1362-1376.
DOI 10.1109/TAC.2011.2174696 |
MR 2926730
[8] Gao, H., Meng, X., Chen, T.:
Stabilization of networked control systems with a new delay characterization. IEEE Trans. Automat. Control 53 (2008), 2142-2148.
DOI |
MR 2459587
[9] Ge, X., Yang., F., Han, Q.:
Distributed networked control systems: a brief overview. Inform Sci. 380 (2017), 117-131.
DOI
[10] Gu, K.: An integral inequality in the stability problem of time-delay systems. In: Proc. 39th IEEE Conference on Decision and Control. 3 (2000), pp. 2805-2810.
[11] Han, Q.:
Absolute stability of time-delay systems with sector-bounded nonlinearity. Automatica 41 (2005), 2171-2176.
DOI |
MR 2174815
[12] Han, Q.:
A discrete delay decomposition approach to stability of linear retarded and neutral systems. Automatica 45 (2009), 517-524.
DOI |
MR 2527352 |
Zbl 1158.93385
[13] Hu, S., Yue, D.:
$\mathcal{L}_2$-Gain analysis of event-triggered networked control systems: a discontinuous lyapunov functional approach. Int. J. Robust Nonlinear Control 23 (2013), 1277-1300.
DOI |
MR 3070832
[14] Li, F., Gao, L., al, et:
Dual-side event-triggered output feedback $H_{\infty}$ control for NCS with communication delays. Int. J. Control Automat. Systems 16 (2018), 108-119.
DOI
[15] Liu, K., Fridman, E., Johansson, K.:
Dynamic quantization of uncertain linear networked control systems. Automatica 59 (2015), 248-255.
DOI |
MR 3371604
[16] Meng, X., Chen, T.:
Event detection and control co-design of sampled-data systems. Int. J. Control 87 (2014), 777-786.
DOI |
MR 3177108
[17] Qiu, J., Gao, H., Ding, S.:
Recent advances on fuzzy-model-based nonlinear networked control systems: a survey. IEEE Trans. Industr. Electron. 63 (2016), 1207-1217.
DOI
[18] Shen, Y., Li, F., Zhang, D., Liu, Y.:
Event-triggered output feedback $ H_{\infty}$ control for networked control systems. Int. J. Robust Nonlinear Control 29 (2018), 166-179.
DOI |
MR 3886115
[19] Walsh, G., Ye, H.:
Scheduling of networked control systems. IEEE Control Systems 21 (2001), 57-65.
DOI 10.1109/37.898792
[20] Wang, R., Jing, H., al, J. Wang et:
Robust output-feedback based vehicle lateral motion control considering network-induced delay and tire force saturation. Neurocomputing 214 (2016), 409-419.
DOI
[21] Wang, M., al, J. Qiu et:
A switched system approach to exponential stabilization of sampled-data T-S fuzzy systems with packet dropouts. IEEE Trans. Cybernet. 46 (2015), 3145-3156.
DOI
[22] Wang, Z., al, F. Yang et:
Robust $ H_{\infty}$ control for networked systems with random packet losses. IEEE Trans. Syst. Man Cybernet. B Cybernet. 37 (2007), 916-924.
DOI
[23] Wang, H., Ying, Y., Lu, R., Xue, A.:
Network-based $ H_{\infty}$ control for singular systems with event-triggered sampling scheme. Inform. Sci. 329 (2016), 540-551.
DOI
[24] Yu, H., Antsaklis, P. J.:
Event-triggered output feedback control for networked control systems using passivity: achieving $\mathcal{L}_2$ stability in the presence of communication delays and signal quantization. Automatica 49 (2013), 30-38.
DOI |
MR 2999945
[25] Yue, D., Han, Q., Chen, P.:
State feedback controller design of networked control systems. IEEE Trans. Circuits Syst. II: Exp. Briefs 51 (2004), 640-644.
DOI
[26] Yue, D., Tian, E., Han, Q.:
A delay system method for designing event-triggered controllers of networked control systems. IEEE Trans. Automat. Control 58 (2013), 475-481.
DOI |
MR 3023940
[27] Zha, L., Fang, J., Liu, J.:
Two channel event-triggering communication schemes for networked control systems. Neurocomputing 197 (2016), 45-52.
DOI
[28] al., X. Zhang et:
Networked control systems: a survey of trends and techniques. IEEE/CAA J. Automat. Sinica 7 (2020), 1-17.
DOI |
MR 4058068
[29] Zhang, L., Gao, H., Kaynak, O.:
Network-induced constraints in networked control systems-a survey. IEEE Trans. Ind. Inform. 9 (2012), 403-416.
DOI
[30] Zhang, X., Han, Q.:
Event-triggered dynamic output feedback control for networked control systems. IET Control Theory Appl. 8 (2014), 226-234.
DOI |
MR 3202366
[31] Zhang, D., Han, Q., J, X.:
Network-based output tracking control for TCS fuzzy systems using an event-triggered communication scheme. Fuzzy Sets Systems 273 (2015), 26-48.
DOI |
MR 3347269
[32] Zhang, X., Han, Q., Yu, X.:
Survey on recent advances in networked control systems. IEEE Trans. Ind. Inform. 12 (2016), 1740-1752.
DOI |
MR 3588201
[33] Zhang, D., Han, Q., Zhang, X.:
Network-based modeling and proportional-integral control for direct-drive-wheel systems in wireless network environments. IEEE Trans. Cybernet. 50 (2020), 2462-2474.
DOI
[34] Zhang, W., Li, Y.:
Modelling and control of networked control systems with both network-induced delay and packet-dropout. Automatica 44 (2008), 3206-3210.
DOI |
MR 2531428
[35] Zhang, D., Shi, P., al, Q. Wang et:
Analysis and synthesis of networked control systems: a survey of recent advances and challenges. ISA Trans. 66 (2016), 376-392.
DOI