[1] Alvarez, E., Castillo, S., Pinto, M.:
$(\omega ,c)$-Pseudo periodic functions, first order Cauchy problem and Lasota-Wazewska model with ergodic and unbounded oscillating production of red cells. Bound. Value Probl. 106 (2019), 1–20.
MR 3974664
[2] Alvarez, E., Castillo, S., Pinto, M.:
$(\omega ,c)$-asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells. Math. Methods Appl. Sci. 43 (2020), 305–319.
DOI 10.1002/mma.5880 |
MR 4044240
[3] Alvarez, E., Gómez, A., Pinto, M.:
$(\omega ,c)$-periodic functions and mild solution to abstract fractional integro-differential equations. Electron. J. Qual. Theory Differ. Equ. 16 (2018), 1–8.
DOI 10.14232/ejqtde.2018.1.16 |
MR 3789407
[4] Andres, J., Pennequin, D.:
Semi-periodic solutions of difference and differential equations. Bound. Value Probl. 141 (2012), 1–16, doi.org/10.1186/1687-2770-2012-141.
DOI 10.1186/1687-2770-2012-141 |
MR 3016042
[5] Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.:
Vector-valued Laplace Transforms and Cauchy Problems. Birkhäuser/Springer Basel AG, Basel, 2001.
MR 2798103
[6] Besicovitch, A.S.: Almost Periodic Functions. Dover Publ., New York, 1954.
[7] Blot, J., Cieutat, P., N’Guérékata, G.M.:
$S$-asymptotically $\omega $-periodic functions and applications to evolution equations. Afr. Diaspora J. Math. 12 (2011), 113–121.
MR 2847308
[8] Chang, Y.-K., Wei, Y.:
$S$-asymptotically Bloch type periodic solutions to some semi-linear evolution equations in Banach spaces. Acta Mathematica Sci. 41B (2021), 413–425.
MR 4206851
[9] Chaouchi, B., Kostić, M., Pilipović, S., Velinov, D.:
Semi-Bloch periodic functions, semi-anti-periodic functions and applications. Chelj. Phy. Math. J. 5 (2020), 243–255.
MR 4137431
[10] Chávez, A., Khalil, K., Kostić, M., Pinto, M.: Multi-dimensional almost automorphic type functions and applications. preprint. 2021. arXiv:2103.10467.
[11] Chávez, A., Khalil, K., Kostić, M., Pinto, M.: Multi-dimensional almost periodic type functions and applications. preprint. 2020. arXiv:2012.00543.
[12] Chávez, A., Khalil, K., Kostić, M., Pinto, M.: Stepanov multi-dimensional almost periodic functions and applications. preprint. 2020. hal-03035195.
[13] Cheban, D.N.:
Asymptotically Almost Periodic Solutions of Differential Equations. Hindawi Publishing Corporation, 2009.
MR 2603600
[14] Cuevas, C., de Souza, J.C.:
Existence of S-asymptotically $\omega $-periodic solutions for fractional order functional integro-differential equations with infinite delay. Nonlinear Anal. 72 (2010), 1683–1689.
DOI 10.1016/j.na.2009.09.007 |
MR 2577568
[15] Diagana, T.:
Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces. Springer-Verlag, New York, 2013.
MR 3098423
[16] Diagana, T., Kostić, M.:
Generalized almost periodic and generalized asymptotically almost periodic type functions in Lebesgue spaces with variable exponents $L^{p(x)}$. Filomat 34 (2020), 1629–1644.
DOI 10.2298/FIL2005629D |
MR 4207701
[17] Diagana, T., Kostić, M.:
Recent Studies in Differential Equations. ch. Chapter 1. Generalized almost automorphic and generalized asymptotically almost automorphic type functions in Lebesgue spaces with variable exponents $L^{p(x)}$, pp. 1–28, Nova Science Publishers, New York, 2020.
MR 3098423
[18] Diening, L., Harjulehto, P., Hästüso, P., Růužicka, M.:
Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Math., Springer, Heidelberg, 2011.
DOI 10.1007/978-3-642-18363-8_3 |
MR 2790542
[20] Fan, X.L., Zhao, D.:
On the spaces $L^{p(x)}(O)$ and $W^{m,p(x)}(O)$. J. Math. Anal. Appl. 263 (2001), 424–446.
MR 1866056
[21] Fečkan, M., Liu, K., Wang, J.-R.:
$(w,\mathbb{T})$-Periodic solutions of impulsive evolution equations. Evol. Equ. Control Theory, doi:10.3934/eect.2021006.
DOI 10.3934/eect.2021006
[22] Fedorov, V., Kostić, M.: Multi-dimensional Weyl almost periodic type functions and applications. preprint. arXiv:2101.11754.
[23] Fink, A.M.:
Almost Periodic Differential Equations. Springer-Verlag, Berlin, 1974.
Zbl 0325.34039
[25] Henríquez, H.R., Pierri, M., Táboas, P.:
On S-asymptotically $\omega $-periodic functions on Banach spaces and applications. -asymptotically $\omega $-periodic functions on Banach spaces and applications, J. Math. Appl. Anal. 343 (2008), 1119–1130.
DOI 10.1016/j.jmaa.2008.02.023 |
MR 2417129
[26] Khalladi, M.T., Kostić, M., Pinto, M., Rahmani, A., Velinov, D.:
Generalized $c$-almost periodic functions and applications. Bull. Int. Math. Virtual Inst. 11 (2021), 283–293.
MR 4187070
[27] Khalladi, M.T., Kostić, M., Pinto, M., Rahmani, A., Velinov, D.:
On semi-$c$-periodic functions. J. Math. (2021), 5 pp., Article ID 6620625,
https://doi.org/10.1155/2021/6620625 DOI 10.1155/2021/6620625 |
MR 4210792
[28] Khalladi, M.T., Kostić, M., Rahmani, A., Pinto, M., Velinov, D.:
$c$-Almost periodic type functions and applications. Nonauton. Dyn. Syst. 7 (2020), 176–193.
DOI 10.1515/msds-2020-0111 |
MR 4185794
[29] Kostić, M.: Multi-dimensional $c$-almost periodic type functions and applications. preprint. aXiv:2012.15735.
[30] Kostić, M.:
Quasi-asymptotically almost periodic functions and applications. Bull. Braz. Math. Soc. (N.S.) 52, 183–212.
DOI 10.1007/s00574-020-00197-7
[31] Kostić, M.: Selected Topics in Almost Periodicity. Book Manuscript, 2021.
[32] Kostić, M.: Weyl almost automorphic functions and applications. preprint 2021. hal-03168920.
[33] Kostić, M.:
Almost Periodic and Almost Automorphic Type Solutions to Integro-Differential Equations. W. de Gruyter, Berlin, 2019.
MR 3931753
[36] Kostić, M., Du, W.-S.:
Generalized almost periodicity in Lebesgue spaces with variable exponents. Fixed Point Theory and Dynamical Systems with Applications, 2020, Special issue of Mathematics, Mathematics 8 928; doi:10.3390/math8060928.
DOI 10.3390/math8060928 |
MR 4202196
[38] Kostić, M., Kumar, V., Pinto, M.: Stepanov multi-dimensional almost automorphic type functions and applications. preprint 2021. hal-03227094.
[39] Kovanko, A.S.: Sur la compacié des sysémes de fonctions presque-périodiques généralisées de H. Weyl. C.R. (Doklady) Ac. Sc. URSS 43 (1944), 275–276.
[40] Levitan, M.: Almost Periodic Functions. G.I.T.T.L., Moscow, 1953, (in Russian).
[41] N’Guérékata, G.M.:
Almost Automorphic and Almost Periodic Functions in Abstract Spaces. Kluwer Acad. Publ., Dordrecht, 2001.
MR 1880351
[42] Nguyen, P.Q.H.:
On variable Lebesgue space. Ph.D. thesis, Kansas State University. Pro- Quest LLC, Ann Arbor, MI, 2011, 63 pp,.
MR 2941891
[43] Oueama-Guengai, E.R., N’Guérékata, G.M.:
On $S$-asymptotically $\omega $-periodic and Bloch periodic mild solutions to some fractional differential equations in abstract spaces. Math. Methods Appl. Sci. 41 (2018), 9116–9122.
DOI 10.1002/mma.5062 |
MR 3897769
[44] Pankov, A.A.: Bounded and Almost Periodic Solutions of Nonlinear Operator Differential Equations. Kluwer Acad. Publ., Dordrecht, 1990.
[46] Zaidman, S.: Almost-Periodic Functions in Abstract Spaces. Pitman Research Notes in Math., vol. 126, Pitman, Boston, 1985.