Previous |  Up |  Next

Article

Keywords:
linear growth problem; symmetric solutions in 2D; existence of solutions in 2D; uniqueness solution in 2D; (non-)attainment of boundary data
Summary:
We discuss variational problems on two-dimensional domains with energy densities of linear growth and with radially symmetric data. The smoothness of generalized minimizers is established under rather weak ellipticity assumptions. Further results concern the radial symmetry of solutions as well as a precise description of their behavior near the boundary.
References:
[1] Adams R. A.: Sobolev Spaces. Pure and Applied Mathematics, 65, Academic Press, New York, 1975. MR 0450957 | Zbl 1098.46001
[2] Ambrosio L., Fusco N., Pallara D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, 224, The Clarendon Press, Oxford University Press, New York, 2000. Zbl 0957.49001
[3] Beck L., Bulíček M., Málek J., Süli E.: On the existence of integrable solutions to nonlinear elliptic systems and variational problems with linear growth. Arch. Ration. Mech. Anal. 225 (2017), no. 2, 717–769. DOI 10.1007/s00205-017-1113-4
[4] Beck L., Bulíček M., Maringová E.: Globally Lipschitz minimizers for variational problems with linear growth. ESAIM Control Optim. Calc. Var. 24 (2018), no. 4, 1395–1403. DOI 10.1051/cocv/2017065
[5] Beck L., Schmidt T.: On the Dirichlet problem for variational integrals in $BV$. J. Reine Angew. Math. 674 (2013), 113–194.
[6] Beck L., Schmidt T.: Convex duality and uniqueness for BV-minimizers. J. Funct. Anal. 268 (2015), no. 10, 3061–3107. DOI 10.1016/j.jfa.2015.03.006
[7] Bildhauer M.: Convex Variational Problems. Linear, Nearly Linear and Anisotropic Growth Conditions. Lecture Notes in Mathematics, 1818, Springer, Berlin, 2003. DOI 10.1007/b12308
[8] Bildhauer M., Fuchs M.: On a class of variational integrals with linear growth satisfying the condition of $\mu$-ellipticity. Rend. Mat. Appl. 22 (2002), no. 7, 249–274.
[9] Bildhauer M., Fuchs M.: A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 385 (2010), Kraevye Zadachi Matematicheskoĭ Fiziki i Smezhnye Voprosy Teorii Funktsiĭ 41, 5–17, 234; reprinted in J. Math. Sci. (N.Y.) 178 (2011), no. 3, 235–242.
[10] Bildhauer M., Fuchs M.: Some remarks on the (non-)attainment of the boundary data for variational problems in the space BV. J. Convex Anal. 25 (2018), no. 1, 219–223.
[11] Bulíček M., Málek J., Rajagopal K., Süli E.: On elastic solids with limiting small strain: modelling and analysis. EMS Surv. Math. Sci. 1 (2014), no. 2, 283–332. DOI 10.4171/EMSS/7
[12] Bulíček M., Málek J., Rajagopal K. R., Walton J. R.: Existence of solutions for the anti-plane stress for a new class of “strain-limiting” elastic bodies. Calc. Var. Partial Differential Equations 54 (2015), no. 2, 2115–2147. DOI 10.1007/s00526-015-0859-5
[13] Bulíček M., Málek J., Süli E.: Analysis and approximation of a strain-limiting nonlinear elastic model. Math. Mech. Solids 20 (2015), no. 1, 92–118. DOI 10.1177/1081286514543601
[14] Bulíček M., Maringová E., Stroffolini B., Verde A.: A boundary regularity result for minimizers of variational integrals with nonstandard growth. Nonlinear Anal. 177 (2018), part A, 153–168.
[15] Buttazzo G., Giaquinta M., Hildebrandt S.: One-dimensional Variational Problems. An Introduction, Oxford Lecture Series in Mathematics and Its Applications, 15, The Clarendon Press, Oxford University Press, New York, 1998.
[16] Finn R.: Remarks relevant to minimal surfaces, and to surfaces of prescribed mean curvature. J. Analyse Math. 14 (1965), 139–160. DOI 10.1007/BF02806384
[17] Giaquinta M., Modica G., Souček J.: Functionals with linear growth in the calculus of variations. I. Comment. Math. Univ. Carolin. 20 (1979), no. 1, 143–156.
[18] Giaquinta M., Modica G., Souček J.: Functionals with linear growth in the calculus of variations. II. Comment. Math. Univ. Carolin. 20 (1979), no. 1, 157–172.
[19] Giaquinta M., Modica G., Souček J.: Cartesian Currents in the Calculus of Variations. I. Cartesian Currents. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, A Series of Modern Surveys in Mathematics, 37, Springer, Berlin, 1998.
[20] Giaquinta M., Modica G., Souček, J.: Cartesian Currents in the Calculus of Variations. II. Cartesian Currents. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, A Series of Modern Surveys in Mathematics, 38, Springer, Berlin, 1998.
[21] Giusti E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, 80, Birkhäuser, Basel, 1984. Zbl 0825.49059
[22] Goffman C., Serrin J.: Sublinear functions of measures and variational integrals. Duke Math. J. 31 (1964), 159–178. DOI 10.1215/S0012-7094-64-03115-1
[23] Reshetnyak Y.: Weak convergence of completely additive vector functions on a set. Sibirsk. Maz. Ž. 9 (1968), 1386–1394; English translation: Sib. Math. J. 9 (1968), 1039–1045.
Partner of
EuDML logo