Previous |  Up |  Next

Article

Title: Classification of quasigroups according to directions of translations II (English)
Author: Sokhatsky, Fedir
Author: Lutsenko, Alla
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 62
Issue: 3
Year: 2021
Pages: 309-323
Summary lang: English
.
Category: math
.
Summary: In each quasigroup $Q$ there are defined six types of translations: the left, right and middle translations and their inverses. Two translations may coincide as permutations of $Q$, and yet be different when considered upon the web of the quasigroup. We shall call each of the translation types a direction and will associate it with one of the elements $\iota, l, r, s, ls $ and $rs$, i.e., the elements of a symmetric group $S_3$. Properties of the directions are considered in part 1 of "Classification of quasigroups according to directions of translations I" by F. M. Sokhatsky and A. V. Lutsenko. Let ${^{\sigma}\mathcal{M}}$ denote the set of all translations of a direction $\sigma\in S_{3}$. The conditions ${^{\sigma}\mathcal{M}}={^{\kappa}\mathcal{M}}$, where $\sigma,\kappa\in S_{3}$ and $\sigma\ne\kappa$, define nine quasigroup varieties. Four of them are well known: $LIP$, $RIP$, $MIP$ and $CIP$. The remaining five quasigroup varieties are relatively new because they are left and right inverses of $ CIP$ variety and generalization of commutative, left and right symmetric quasigroups. (English)
Keyword: quasigroup
Keyword: parastrophe
Keyword: parastrophic symmetry
Keyword: parastrophic orbit
Keyword: translation
Keyword: direction
Keyword: matrix quasigroup
MSC: 20N05
idMR: MR4331285
DOI: 10.14712/1213-7243.2021.021
.
Date available: 2021-10-20T08:10:54Z
Last updated: 2023-10-02
Stable URL: http://hdl.handle.net/10338.dmlcz/149151
.
Reference: [1] Belousov V. D.: Foundations of the Theory of Quasigroups and Loops.Nauka, Moskva, 1967 (Russian).
Reference: [2] Belousov V. D., Curkan B. V.: Crossed-inverse quasigroups (CI-quasigroups).Izv. Vysš. Učebn. Zaved. Math. 1969 (1969), no. 3(82), 21–27 (Russian).
Reference: [3] Duplák J.: Quasigroups determined by balanced identities of length $\leqslant6$.Czechoslovak Math. J. 36(111) (1986), no. 4, 599–616. 10.21136/CMJ.1986.102119
Reference: [4] Issa A. N.: On quasigroups with the left loop property.Comment. Math. Univ. Carolin. 41 (2000), no. 4, 663–669.
Reference: [5] Izbash V., Labo N.: Crossed-inverse-property groupoids.Bul. Acad. Ştiinţe Repub. Mold. Mat. (2007), no. 2, 101–106.
Reference: [6] Keedwell A. D., Shcherbacov V. A.: On $m$-inverse loops and quasigroups with a long inverse cycle.Australas. J. Combin. 26 (2002), 99–119. Zbl 1020.20041
Reference: [7] Keedwell A. D., Shcherbacov V. A.: Construction and properties of $(r, s, t)$-inverse quasigroups. I.The 18th British Combinatorial Conf., Brighton, 2001, Discrete Math. 266 (2003), no. 1–3, 275–291. 10.1016/S0012-365X(02)00814-2
Reference: [8] Keedwell A. D., Shcherbacov V. A.: Construction and properties of $(r, s, t)$-inverse quasigroups. II.Discrete Math. 288 (2004), no. 1–3, 61–71. 10.1016/j.disc.2004.06.020
Reference: [9] Krainichuk H., Tarkovska O.: Semi-symmetric isotopic closure of some group varieties and the corresponding identities.Bul. Acad. Ştiinţe Repub. Mold. Mat. 3(85) (2017), no. 3, 3–22.
Reference: [10] Krapež A.: Generalized quadratic quasigroup equations with three variables.Quasigroups Related Systems 17 (2009), no. 2, 253–270.
Reference: [11] Lindner C. C.: Totally symmetric and semi-symmetric quasigroups have the intersection preserving finite embeddability property.Period. Math. Hungar. 8 (1977), no. 1, 33–39. 10.1007/BF02018044
Reference: [12] Smith J. D. H.: An Introduction to Quasigroups and Their Representations.Studies in Advanced Mathematics, Chapman & Hall/CRC, Boca Raton, 2007. Zbl 1122.20035
Reference: [13] Sokhatsky F. M.: On pseudoisomorphy and distributivity of quasigroups.Bul. Acad. Ştiinţe Repub. Mold. Mat. 2(81) (2016), 125–142.
Reference: [14] Sokhatsky F. M.: Parastrophic symmetry in quasigroup theory.Visnik DonNU. Ser. A: Natural Sciences 1–2 (2016), 70–83.
Reference: [15] Sokhatsky F. M., Lutsenko A. V.: The bunch of varieties of inverse property quasigroups.Visnik DonNU. Ser. A: natural Sciences 1–2 (2018), 56–69.
Reference: [16] Sokhatsky F. M., Lutsenko A. V.: Classification of quasigroups according to directions of translations I.Comment. Math. Univ. Carolin. 4 (2020), no. 4, 567–579.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_62-2021-3_5.pdf 252.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo