[1] Bensoussan, A., Cakanyildirim, M., Sethi, S. P.:
Partially observed inventory systems: the case of zero-balance walk. SIAM J. Control Optim. 46 (2007), 176-209.
DOI
[2] Bauerle, N., Rieder, U.: Markov Decision Processes with Applications to Finance. Springer, Berlin 2011.
[3] Bertsekas, D- P., Shreve, S. E.:
Stochastic Optimal Control: The Discrete Time Case. Academic Press, New York 1978.
Zbl 0633.93001
[4] Dynkin, E. B., Yushkevich, A. A.:
Controlled Markov Processes. Springer-Verlag, New York 1979.
MR 0554083
[5] Elliott, R. J., Aggoun, L., Moore, J. B.: Hidden Markov Models: Estimation and Control. Springer-Verlag, New York 1994.
[6] Gordienko, E., Hernandez-Lerma, O.:
Average cost Markov control processes with weighted norms: value iteration. Appl. Math. 23 (1995), 219-237.
DOI
[7] Gordienko, E., Minjarez-Sosa, J. A.: Adaptive control for discrete-time Markov processes with unbounded costs: discounted criterion. Kybernetika 34 (1998), 217-234.
[8] Hernandez-Lerma, O.: Adaptive Markov Control Processes. Springer-Verlag, New York 1989.
[9] Hernandez-Lerma, O., Munoz-de-Ozak, M.: Discrete-time Markov control processes with discounted unbounded costs: optimality criteria. Kybernetika 28 (1992), 191-221.
[10] Kitaev, M. Y., Rykov, V. V.: Controlled Queueing Systems. CRC Press, Boca Raton 1995.
[11] Lindley, D. V.:
The theory of queues with a single server. Proc. Cambridge Philos Soc. 48 (1952), 277-289.
DOI
[12] Hilgert, N., Minjarez-Sosa, J. A.:
Adaptive policies for time-varying stochastic systems under discounted criterion. Math. Methods Oper. Res. 54 (2001), 491-505.
DOI
[13] Minjarez-Sosa, J. A.: Approximation and estimation in Markov control processes under discounted criterion. Kybernetika 40 (2004), 681-690.
[14] Minjarez-Sosa, J. A.:
Markov control models with unknown random state-action-dependent discount factors. TOP 23 (2015), 743-772.
DOI
[15] Runggaldier, W. J., Stettner, L.: Approximations of Discrete Time Partially Observed Control Problems. Appl. Math. Monographs CNR 6, Giardini, Pisa 1994.
[16] Sennott, L. I.:
Stochastic Dynamic Programming and the Control of Queueing Systems. Wiley, New York 1999.
Zbl 0997.93503
[17] Striebel, C.:
Optimal Control of Discrete Time Stochastic Systems. Lecture Notes Econ. Math. Syst. 110, Springer-Verlag, Berlin 1975.
DOI 10.1007/978-3-642-45470-7
[18] Yushkevich, A. A.:
Reduction of a controlled Markov model with incomplete data to a problem with complete information in the case of Borel state and control spaces. Theory Probab. Appl.21 (1976), 153-158.
DOI