[1] Baksalary, J. K., Markiewicz, A.:
Admissible linear estimators in restricted linear models. Linear Algebra Appl. 70 (1985), 9-19.
DOI
[2] Baksalary, J. K., Markiewicz, A.:
Characterizations of admissible linear estimators in restricted linear models. Statist. Planning Inference 13 (1986), 395-398.
DOI
[3] Baksalary, J. K., Markiewicz, A.:
Admissible linear estimators in the general Gauss-Markov model. Statist. Planning Inference 19 (1988), 349-359.
DOI |
Zbl 0656.62076
[4] Cohen, A.:
All admissible linear estimates of the mean vector. Ann. Math. Statist. 37 (1966), 458-463.
DOI
[5] Chen, X. R., Chen, G., Wu, Q., Zhao, L.: Parameter Estimation Theory for Linear Models. Science Press, Beijing 1985.
[6] Chaturvedi, A., Shalabh:
Bayesian estimation of regression coefficients under extended balanced loss function. Comm. Statist. Theory and Methods 43 (2014), 4253-4264.
DOI
[7] Cao, M.:
Admissibility of linear estimators for the stochastic regression coefficient in a general Gauss-Markoff model under a balanced loss function. Multivariate Analysis 124 (2014), 25-30.
DOI
[8] Cao, M., He, D.:
Linearly admissible estimators on linear functions of regression coefficient under balanced loss function. Comm. Statist. Theory and Methods 48 (2019), 2700-2706.
DOI
[9] Dong, L., Wu, Q.: Necessary and sufficient conditions for linear estimators of stochastic regression coefficients and parameters to be admissible under quadratic loss. Acta Math. Sinica 31 (1988), 145-157.
[10] Graybill, F. A.: Matrices With Application in Statistics. Californie 1983.
[11] Gro{\ss}, J.: Linear Regression. Springer-Verlag, Berlin Heidelberg 2003.
[12] Gross, J., Markiewicz, A.:
Characterizations of admissible linear estimators in the linear model. Linear Algebra Appl. 388 (2004), 239-248.
DOI
[13] Hoffmann, K.:
All admissible linear estimators of the regression parameter vector in the case of an arbitrary parameter subset. Statist. Planning Inference 48 (1995), 371-377.
DOI
[15] Kaçiranlar, S., Dawoud, I.:
The optimal extended balanced loss function estimators. Comput. Appl. Math. 345 (2019), 86-98.
DOI 10.1016/j.cam.2018.06.021
[16] Lehmann, E. L., Casella, G.: Theory of Point Estimation. Second edition. Springer-Verlag, New York 2005.
[18] Özbay, N., Kaçiranlar, S.:
The performance of the adaptive optimal estimator under the extended balanced loss function. Comm. Statist. Theory and Methods 46 (2017), 11315-11326.
DOI
[19] Rao, C. R.:
Estimation of parameters in a linear model. Ann. Statist. 4 (1976), 1023-1037.
Zbl 0421.62047
[20] St\k{e}pniak, C.:
Admissible linear estimators in mixed linear models. J. Multivariate Analysis 31 (1989), 90-106.
DOI
[21] Shalabh, S.: Performance of Stein - rule Procedure for simultaneous prediction of actual and average values of study variable in linear regression model. Bull. Int. Statist. Inst. 56 (1995), 1375-1390.
[22] Shalabh, S., Toutenburg, H., Heumann, C.:
Stein-rule estimation under an extended balanced loss function. J. Statist. Comput. Simul. 79 (2009), 1259-1273.
DOI
[23] St\k{e}pniak, C.: Admissible invariant estimators in a linear model. Kybernetika 50 (2014), 310-321.
[24] Synówka-Bejenka, E., Zontek, S.: On admissibility of linear estimators in models with finitely generated parameter space. Kybernetika (2016), 724-734.
[25] Xu, X., Wu, Q.: Linearly admissible estimators of regression coefficient under balanced loss. Acta Math. Sci. 20 (2000), 468-473.
[26] Lu, C. Y., Shi, N. Z.:
Admissible linear estimators in linear models with respect to inequality constraints. Linear Algebra Appl. 354 (2002), 187-194.
DOI
[27] Zellner, A.: Bayesian and Non-Bayesian Estimation Using Balanced Loss Functions. Statistical Decision Theory and Related Topics V, Springer, New York 1994, pp. 377-390.