Previous |  Up |  Next

Article

Title: A note on arithmetic Diophantine series (English)
Author: Patkowski, Alexander E.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 4
Year: 2021
Pages: 1149-1155
Summary lang: English
.
Category: math
.
Summary: We consider an asymptotic analysis for series related to the work of Hardy and Littlewood (1923) on Diophantine approximation, as well as Davenport. In particular, we expand on ideas from some previous work on arithmetic series and the RH. To accomplish this, Mellin inversion is applied to certain infinite series over arithmetic functions to apply Cauchy's residue theorem, and then the remainder of terms is estimated according to the assumption of the RH. In the last section, we use simple properties of the fractional part function and its Fourier series to state some identities involving different arithmetic functions. We then discuss some of their individual properties, such as convergence, as well as implications related to known work. (English)
Keyword: arithmetic series
Keyword: Riemann zeta function
Keyword: Möbius function
MSC: 11L20
MSC: 11M06
idZBL: Zbl 07442480
idMR: MR4339117
DOI: 10.21136/CMJ.2021.0311-20
.
Date available: 2021-11-08T16:04:14Z
Last updated: 2024-01-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149244
.
Reference: [1] Chakraborty, K., Kanemitsu, S., Tsukada, H.: Arithmetical Fourier series and the modular relation.Kyushu J. Math. 66 (2012), 411-427. Zbl 1334.11072, MR 3051345, 10.2206/kyushujm.66.411
Reference: [2] Davenport, H.: On some infinite series involving arithmetical functions.Q. J. Math., Oxf. Ser. 8 (1937), 8-13. Zbl 0016.20105, 10.1093/qmath/os-8.1.8
Reference: [3] Hardy, G. H., Littlewood, J. E.: Contributions to the theory of the Riemann Zeta-function and the theory of the distribution of primes.Acta Math. 41 (1917), 119-196 \99999JFM99999 46.0498.01. MR 1555148, 10.1007/BF02422942
Reference: [4] Hardy, G. H., Littlewood, J. E.: Some problems of Diophantine approximation: The analytic properties of certain Dirichlet's series associated with the distribution of numbers to modulus unity.Trans. Camb. Philos. Soc. 27 (1923), 519-534 \99999JFM99999 49.0131.01.
Reference: [5] Iwaniec, H., Kowalski, E.: Analytic Number Theory.Colloquium Publications. American Mathematical Society 53. American Mathematical Society, Providence (2004). Zbl 1059.11001, MR 2061214, 10.1090/coll/053
Reference: [6] Li, H. L., Ma, J., Zhang, W. P.: On some Diophantine Fourier series.Acta Math. Sin., Engl. Ser. 26 (2010), 1125-1132. Zbl 1221.11060, MR 2644050, 10.1007/s10114-010-8387-x
Reference: [7] Luther, W.: The differentiability of Fourier gap series and ``Riemann's example'' of a continuous, nondifferentiable function.J. Approximation Theory 48 (1986), 303-321. Zbl 0626.42008, MR 0864753, 10.1016/0021-9045(86)90053-5
Reference: [8] Paris, R. B., Kaminski, D.: Asymptotics and Mellin-Barnes Integrals.Encyclopedia of Mathematics and Its Applications 85. Cambridge University Press, Cambridge (2001). Zbl 0983.41019, MR 1854469, 10.1017/CBO9780511546662
Reference: [9] Segal, S. L.: On an identity between infinite series of arithmetic functions.Acta Arith. 28 (1976), 345-348. Zbl 0319.10050, MR 0387222, 10.4064/aa-28-4-345-348
Reference: [10] Titchmarsh, E. C.: The Theory of the Riemann Zeta-Function.Oxford Science Publications. Oxford University Press, Oxford (1986). Zbl 0601.10026, MR 0882550
.

Files

Files Size Format View
CzechMathJ_71-2021-4_17.pdf 193.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo