Previous |  Up |  Next

Article

Keywords:
unit group; finite field; Wedderburn decomposition
Summary:
We characterize the unit group of semisimple group algebras $\mathbb {F}_qG$ of some non-metabelian groups, where $F_q$ is a field with $q=p^k$ elements for $p$ prime and a positive integer $k$. In particular, we consider all 6 non-metabelian groups of order 48, the only non-metabelian group $((C_3\times C_3)\rtimes C_3)\rtimes C_2$ of order 54, and 7 non-metabelian groups of order 72. This completes the study of unit groups of semisimple group algebras for groups upto order 72.
References:
[1] Bovdi, A. A., Kurdics, J.: Lie properties of the group algebra and the nilpotency class of the group of units. J. Algebra 212 (1999), 28-64. DOI 10.1006/jabr.1998.7617 | MR 1670626 | Zbl 0936.16028
[2] Bovdi, V., Salim, M.: On the unit group of a commutative group ring. Acta Sci. Math. 80 (2014), 433-445. DOI 10.14232/actasm-013-510-1 | MR 3307035 | Zbl 1322.16024
[3] Creedon, L., Gildea, J.: The structure of the unit group of the group algebra $F_{2^k}D_8$. Can. Math. Bull. 54 (2011), 237-243. DOI 10.4153/CMB-2010-098-5 | MR 2884238 | Zbl 1242.16033
[4] Ferraz, R. A.: Simple components of the center of $FG/J(FG)$. Commun. Algebra 36 (2008), 3191-3199. DOI 10.1080/00927870802103503 | MR 2441107 | Zbl 1156.16019
[5] Gildea, J.: The structure of the unit group of the group algebra $F_{2^k}A_4$. Czech. Math. J. 61 (2011), 531-539. DOI 10.1007/s10587-011-0071-5 | MR 2905421 | Zbl 1237.16035
[6] Gildea, J., Monaghan, F.: Units of some group algebras of groups of order 12 over any finite field of characteristic 3. Algebra Discrete Math. 11 (2011), 46-58. MR 2868359 | Zbl 1256.16023
[7] Hurley, T.: Convolutional codes from units in matrix and group rings. Int. J. Pure Appl. Math. 50 (2009), 431-463. MR 2490664 | Zbl 1173.94452
[8] Karpilovsky, G.: The Jacobson Radical of Group Algebras. North-Holland Mathematics Studies 135. North-Holland, Amsterdam (1987). DOI 10.1016/s0304-0208(08)x7052-5 | MR 0886889 | Zbl 0618.16001
[9] Khan, M., Sharma, R. K., Srivastava, J. B.: The unit group of $FS_4$. Acta Math. Hung. 118 (2008), 105-113. DOI 10.1007/s10474-007-6169-4 | MR 2378543 | Zbl 1156.16024
[10] Kumar, Y.: On The Unit Group Of Certain Finite Group Algebras. PhD Thesis. Indian Institute of Technology Delhi (IIT Delhi), New Delhi (2019), Available at \brokenlink{ http://{eprint.iitd.ac.in/bitstream/handle/2074/8276/TH-5966.pdf?sequence=1}}\kern0pt
[11] Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge (1994). DOI 10.1017/CBO9781139172769 | MR 1294139 | Zbl 0820.11072
[12] Maheshwari, S., Sharma, R. K.: The unit group of group algebra $F_qSL(2;Z_3)$. J. Algebra Comb. Discrete Struct. Appl. 3 (2016), 1-6. DOI 10.13069/jacodesmath.83854 | MR 3450932 | Zbl 1429.16027
[13] Makhijani, N., Sharma, R. K., Srivastava, J. B.: The unit group of $F_q[D_{30}]$. Serdica Math. J. 41 (2015), 185-198. MR 3363601
[14] Makhijani, N., Sharma, R. K., Srivastava, J. B.: A note on the structure of $F_{p^k}A_5/J(F_{p^k}A_5)$. Acta Sci. Math. 82 (2016), 29-43. DOI 10.14232/actasm-014-311-2 | MR 3526335 | Zbl 1399.16065
[15] Makhijani, N., Sharma, R. K., Srivastava, J. B.: Units in finite dihedral and quaternion group algebras. J. Egypt. Math. Soc. 24 (2016), 5-7. DOI 10.1016/j.joems.2014.08.001 | MR 3456857 | Zbl 1336.16042
[16] Pazderski, G.: The orders to which only belong metabelian groups. Math. Nachr. 95 (1980), 7-16. DOI 10.1002/mana.19800950102 | MR 0592878 | Zbl 0468.20018
[17] Perlis, S., Walker, G. L.: Abelian group algebras of finite order. Trans. Am. Math. Soc. 68 (1950), 420-426. DOI 10.1090/S0002-9947-1950-0034758-3 | MR 0034758 | Zbl 0038.17301
[18] Milies, C. Polcino, Sehgal, S. K.: An Introduction to Group Rings. Algebras and Applications 1. Kluwer Academic Publishers, Dordrecht (2002). MR 1896125 | Zbl 0997.20003
[19] Sharma, R. K., Srivastava, J. B., Khan, M.: The unit group of $FA_4$. Publ. Math. 71 (2007), 21-26. MR 2340031 | Zbl 1135.16033
[20] Sharma, R. K., Srivastava, J. B., Khan, M.: The unit group of $FS_3$. Acta Math. Acad. Paedagog. Nyházi 23 (2007), 129-142. MR 2368934 | Zbl 1135.16034
[21] Tang, G., Wei, Y., Li, Y.: Unit groups of group algebras of some small groups. Czech. Math. J. 64 (2014), 149-157. DOI 10.1007/s10587-014-0090-0 | MR 3247451 | Zbl 1340.16040
Partner of
EuDML logo