Previous |  Up |  Next

Article

Keywords:
Palais-Smale condition; Ljusternick-Schnirelmann; Variational methods; $p(\cdot )$-biharmonic operator; $p(\cdot )$-harmonic operator; Variable exponent.
Summary:
The existence of at least one non-decreasing sequence of positive eigenvalues for the problem driven by both $p(\cdot )$-Harmonic and $p(\cdot )$-biharmonic operators \begin {gather*} \Delta _{p(x)}^2 u-\Delta _{p(x)}u=\lambda w(x)|u|^{q(x)-2}u \quad \text {in } \Omega ,\\ u\in W^{2,p(\cdot )}(\Omega )\cap W_0^{1,p(\cdot )}(\Omega )\,, \end {gather*} is proved by applying a local minimization and the theory of the generalized Lebesgue-Sobolev spaces $L^{p(\cdot )}(\Omega )$ and $W^{m,p(\cdot )}(\Omega )$.
References:
[1] Bui, T.A.: $W^{1,p(\cdot )}$ estimate for renormalized solutions of quasilinear equations with measure data and Reifenberg domains. Advances in Nonlinear Analysis, 7, 4, 2018, 517-533, Walter de Gruyter Gmbh Genthiner Strasse 13, D-10785 Berlin, Germany, DOI 10.1515/anona-2016-0095 | MR 3871419
[2] Cencelj, M., Rădulescu, V.D., Repovš, D.D.: Double phase problems with variable growth. Nonlinear Analysis, 177, 2018, 270-287, Elsevier, DOI 10.1016/j.na.2018.03.016 | MR 3865198
[3] Diening, L., Harjulehto, P., Hästö, P., Ruzicka, M.: Lebesgue and Sobolev spaces with variable exponents. 2011, Lecture Notes in Mathematics, Springer, MR 2790542
[4] Edmunds, D., Rákosník, J.: Sobolev embeddings with variable exponent. Studia Mathematica, 143, 3, 2000, 267-293, DOI 10.4064/sm-143-3-267-293
[5] Khalil, A. El, Alaoui, M.D. Morchid, Touzani, A.: On the Spectrum of problems involving both $p ( x ) $-Laplacian and $P ( x ) $-Biharmonic. Advances in Science, Technology and Engineering Systems Journal, 2, 5, 2017, 134-140,
[6] Fan, X., Han, X.: Existence and multiplicity of solutions for $p(x)$-Laplacian equations in Dirichlet problem in $\mathbb {R}^{N}$. Nonlinear Analysis: Theory, Methods & Applications, 59, 1--2, 2004, 173-188, Elsevier, MR 1954585
[7] Fan, X.L., Fan, X.: A Knobloch-type result for $p (t)$-Laplacian systems. Journal of mathematical analysis and applications, 282, 2, 2003, 453-464, Academic Press, DOI 10.1016/S0022-247X(02)00376-1 | MR 1989103
[8] Fan, X.L., Fan, X.: A Knobloch-type result for $p (t)$-Laplacian systems. Journal of mathematical analysis and applications, 282, 2, 2003, 453-464, Academic Press, DOI 10.1016/S0022-247X(02)00376-1 | MR 1989103
[9] Fan, X.L., Zhang, Q.H.: Existence of solutions for $p (x)$-Laplacian Dirichlet problem. Nonlinear Analysis: Theory, Methods & Applications, 52, 8, 2003, 1843-1852, Elsevier, MR 1954585
[10] Kefi, K., Rădulescu, V.D.: On a $p(x)$-biharmonic problem with singular weights. Zeitschrift für angewandte Mathematik und Physik, 68, 80, 2017, 1-13, Springer, MR 3667256
[11] Scapellato, A.: Regularity of solutions to elliptic equations on Herz spaces with variable exponents. Boundary Value Problems, 2019, 1, 2019, 1-9, SpringerOpen, MR 3895830
[12] Mihăilescu, M., Rădulescu, V.: A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 462, 2073, 2006, 2625-2641, The Royal Society London, DOI 10.1098/rspa.2005.1633 | MR 2253555
[13] Rădulescu, V.D.: Nonlinear elliptic equations with variable exponent: old and new. Nonlinear Analysis: Theory, Methods & Applications, 121, 2015, 336-369, Elsevier, DOI 10.1016/j.na.2014.11.007 | MR 3348928
[14] Rădulescu, V.D.: Isotropic and anisotropic double-phase problems: old and new. Opuscula Mathematica, 39, 2, 2019, 259-279, AGH University of Science and Technology Press, MR 3897817
[15] Rădulescu, V.D., Repovš, D.D.: Partial differential equations with variable exponents: variational methods and qualitative analysis. 9, 2015, Monographs and Research Notes in Mathematics, CRC press, MR 3379920
[16] Růžička, M.: Electrorheological fluids: modeling and mathematical theory. 2000, Lecture Notes in Mathematics, 1748, Springer Science & Business Media,
[17] Szulkin, A.: Ljusternik-Schnirelmann theory on $C^1$-manifolds. Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 5, 2, 1988, 119-139, Elsevier,
[18] Zang, A., Fu, Y.: Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces. Nonlinear Analysis: Theory, Methods & Applications, 69, 10, 2008, 3629-3636, Elsevier, DOI 10.1016/j.na.2007.10.001 | MR 2450565 | Zbl 1153.26312
[19] Zeidler, E.: Nonlinear Functional Analysis and Its Applications: II/B: Nonlinear Monotone Operators. 1990, Springer, Translated from the German by the author and Leo F. Boron.
[20] Zhang, Q., Rădulescu, V.D.: Double phase anisotropic variational problems and combined effects of reaction and absorption terms. Journal de Mathématiques Pures et Appliquées, 118, 2018, 159-203, Elsevier, DOI 10.1016/j.matpur.2018.06.015 | MR 3852472
[21] Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory (in Russian). Izv. Akad. Nauk SSSR Ser. Mat., 50, 4, 1986, 675-710,
Partner of
EuDML logo