Previous |  Up |  Next

Article

Keywords:
unit group; finite field; Wedderburn decomposition
Summary:
We give the characterization of the unit group of $\mathbb {F}_qSL(2, \mathbb {Z}_5)$, where $\mathbb {F}_q$ is a finite field with $q = p^k$ elements for prime $p > 5,$ and $SL(2, \mathbb {Z}_5)$ denotes the special linear group of $2 \times 2$ matrices having determinant $1$ over the cyclic group $\mathbb {Z}_5$.
References:
[1] Creedon, L., Gildea, J.: The structure of the unit group of the group algebra $F_{2^k}D_8$. Can. Math. Bull. 54 (2011), 237-243. DOI 10.4153/CMB-2010-098-5 | MR 2884238 | Zbl 1242.16033
[2] Ferraz, R. A.: Simple components of the center of $FG/J(FG)$. Commun. Algebra 36 (2008), 3191-3199. DOI 10.1080/00927870802103503 | MR 2441107 | Zbl 1156.16019
[3] Gildea, J.: The structure of the unit group of the group algebra $F_{2^k}A_4$. Czech. Math. J. 61 (2011), 531-539. DOI 10.1007/s10587-011-0071-5 | MR 2905421 | Zbl 1237.16035
[4] Gildea, J., Monaghan, F.: Units of some group algebras of groups of order 12 over any finite field of characteristic 3. Algebra Discrete Math. 11 (2011), 46-58. MR 2868359 | Zbl 1256.16023
[5] Hurley, T.: Group rings and rings of matrices. Int. J. Pure Appl. Math. 31 (2006), 319-335. MR 2266951 | Zbl 1136.20004
[6] Hurley, T.: Convolutional codes from units in matrix and group rings. Int. J. Pure Appl. Math. 50 (2009), 431-463. MR 2490664 | Zbl 1173.94452
[7] Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge (1994). DOI 10.1017/CBO9781139172769 | MR 1294139 | Zbl 0820.11072
[8] Maheshwari, S., Sharma, R. K.: The unit group of group algebra $F_qSL(2;Z_3)$. J. Algebra Comb. Discrete Struct. Appl. 3 (2016), 1-6. DOI 10.13069/jacodesmath.83854 | MR 3450932 | Zbl 1429.16027
[9] Makhijani, N., Sharma, R. K., Srivastava, J. B.: A note on units of $F_{p^m}[D_{2p^m}]$. Acta Math. Acad. Paedagog. Nyházi. (N.S.) 30 (2014), 17-25. MR 3285078 | Zbl 1324.16035
[10] Makhijani, N., Sharma, R. K., Srivastava, J. B.: The unit group of algebra of circulant matrices. Int. J. Group Theory 3 (2014), 13-16. DOI 10.1142/S0219498813500904 | MR 3181770 | Zbl 1335.16028
[11] Makhijani, N., Sharma, R. K., Srivastava, J. B.: The unit group of $F_q[D_{30}]$. Serdica Math. J. 41 (2015), 185-198. MR 3363601
[12] Makhijani, N., Sharma, R. K., Srivastava, J. B.: A note on the structure of $F_{p^k}A_5/J(F_{p^k}A_5)$. Acta Sci. Math. 82 (2016), 29-43. DOI 10.14232/actasm-014-311-2 | MR 3526335 | Zbl 1399.16065
[13] Makhijani, N., Sharma, R. K., Srivastava, J. B.: The unit group of some special semi-simple group algebras. Quaest. Math. 39 (2016), 9-28. DOI 10.2989/16073606.2015.1024410 | MR 3483353 | Zbl 1445.16023
[14] Makhijani, N., Sharma, R. K., Srivastava, J. B.: Units in finite dihedral and quaternion group algebras. J. Egypt. Math. Soc. 24 (2016), 5-7. DOI 10.1016/j.joems.2014.08.001 | MR 3456857 | Zbl 1336.16042
[15] Mittal, G., Sharma, R.: On unit group of finite semisimple group algebras of nonmetabelian groups upto order 72. Math. Bohem. 146 (2021), 429-455. DOI 10.21136/MB.2021.0116-19 | MR 4336549
[16] Perlis, S., Walker, G. L.: Abelian group algebras of finite order. Trans. Am. Math. Soc. 68 (1950), 420-426. DOI 10.1090/S0002-9947-1950-0034758-3 | MR 0034758 | Zbl 0038.17301
[17] Milies, C. Polcino, Sehgal, S. K., Sudarshan, S.: An Introduction to Group Rings. Algebras and Applications 1. Kluwer Academic Publishers, Dordrecht (2002). DOI 10.1007/978-94-010-0405-3 | MR 1896125 | Zbl 0997.20003
[18] Sharma, R. K., Srivastava, J. B., Khan, M.: The unit group of $FA_4$. Publ. Math. 71 (2007), 21-26. MR 2340031 | Zbl 1135.16033
[19] Sharma, R. K., Srivastava, J. B., Khan, M.: The unit group of $FS_3$. Acta Math. Acad. Paedagog. Nyházi. (N.S.) 23 (2007), 129-142. MR 2368934 | Zbl 1135.16034
[20] Sharma, R. K., Yadav, P.: Unit group of algebra of circulant matrices. Int. J. Group Theory 2 (2013), 1-6. MR 3053357 | Zbl 1306.16037
[21] Tang, G., Wei, Y., Li, Y.: Unit groups of group algebras of some small groups. Czech. Math. J. 64 (2014), 149-157. DOI 10.1007/s10587-014-0090-0 | MR 3247451 | Zbl 1340.16040
Partner of
EuDML logo