Previous |  Up |  Next

Article

Keywords:
higher order nonlinear dispersive equation; radius of spatial analyticity; approximate conservation law
Summary:
In this work, using bilinear estimates in Bourgain type spaces, we prove the local existence of a solution to a higher order nonlinear dispersive equation on the line for analytic initial data $u_{0}$. The analytic initial data can be extended as holomorphic functions in a strip around the $x$-axis. By Gevrey approximate conservation law, we prove the existence of the global solutions, which improve earlier results of Z. Zhang, Z. Liu, M. Sun, S. Li, (2019).
References:
[1] Bona, J. L., Grujić, Z., Kalisch, H.: Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005), 783-797. DOI 10.1016/j.anihpc.2004.12.004 | MR 2172859 | Zbl 1095.35039
[2] Boukarou, A., Guerbati, K., Zennir, K., Alodhaibi, S., Alkhalaf, S.: Well-posedness and time regularity for a system of modified Korteweg-de Vries-type equations in analytic Gevrey spaces. Mathematics 8 (2020), Article ID 809, 16 pages. DOI 10.3390/math8050809
[3] Boukarou, A., Zennir, K., Guerbati, K., Georgiev, S. G.: Well-posedness of the Cauchy problem of Ostrovsky equation in analytic Gevrey spaces and time regularity. Rend. Circ. Mat. Palermo (2) 70 (2021), 349-364. DOI 10.1007/s12215-020-00504-7 | MR 4234317 | Zbl 1462.35139
[4] Boukarou, A., Zennir, K., Guerbati, K., Svetlin, G. G.: Well-posedness and regularity of the fifth order Kadomtsev-Petviashvili I equation in the analytic Bourgain spaces. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 66 (2020), 255-272. DOI 10.1007/s11565-020-00340-8 | MR 4156193
[5] Colliander, J. E., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Multilinear estimates for periodic KdV equations, and applications. J. Funct. Anal. 211 (2004), 173-218. DOI 10.1016/S0022-1236(03)00218-0 | MR 2054622 | Zbl 1062.35109
[6] Grujić, Z., Kalisch, H.: Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions. Differ. Integral Equ. 15 (2002), 1325-1334. MR 1920689 | Zbl 1031.35124
[7] Himonas, A. A., Kalisch, H., Selberg, S.: On persistence of spatial analyticity for the dispersion-generalized periodic KdV equation. Nonlinear Anal., Real World Appl. 38 (2017), 35-48. DOI 10.1016/j.nonrwa.2017.04.003 | MR 3670696 | Zbl 1379.35278
[8] Jones, K. L., He, X., Chen, Y.: Existence of periodic traveling wave solution to the forced generalized nearly concentric Korteweg-de Vries equation. Int. J. Math. Math. Sci. 24 (2000), 371-377. DOI 10.1155/S0161171200004336 | MR 1780966 | Zbl 0961.35143
[9] Katznelson, Y.: An Introduction to Harmonic Analysis. Dover Books on Advanced Mathematics. Dover Publications, New York (1976). DOI 10.1017/CBO9781139165372 | MR 0422992 | Zbl 0352.43001
[10] Petronilho, G., Silva, P. L. da: On the radius of spatial analyticity for the modified Kawahara equation on the line. Math. Nachr. 292 (2019), 2032-2047. DOI 10.1002/mana.201800394 | MR 4009345 | Zbl 1427.35220
[11] Selberg, S., Silva, D. O. da: Lower bounds on the radius of a spatial analyticity for the KdV equation. Ann. Henri Poincaré 18 (2017), 1009-1023. DOI 10.1007/s00023-016-0498-1 | MR 3611022 | Zbl 1366.35161
[12] Selberg, S., Tesfahun, A.: On the radius of spatial analyticity for the 1d Dirac-KleinGordon equations. J. Differ. Equations 259 (2015), 4732-4744. DOI 10.1016/j.jde.2015.06.007 | MR 3373420 | Zbl 1321.35179
[13] Selberg, S., Tesfahun, A.: On the radius of spatial analyticity for the quartic generalized KdV equation. Ann. Henri Poincaré 18 (2017), 3553-3564. DOI 10.1007/s00023-017-0605-y | MR 3719502 | Zbl 1379.35280
[14] Tao, T.: Nonlinear Dispersive Equations: Local and Global Analysis. CBMS Regional Conference Series in Mathematics 106. AMS, Providence (2006). DOI 10.1090/cbms/106 | MR 2233925 | Zbl 1106.35001
[15] Zhang, Z., Liu, Z., Sun, M., Li, S.: Low regularity for the higher order nonlinear dispersive equation in Sobolev spaces of negative index. J. Dyn. Differ. Equations 31 (2019), 419-433. DOI 10.1007/s10884-018-9669-8 | MR 3935149 | Zbl 1421.35043
Partner of
EuDML logo