Previous |  Up |  Next

Article

Keywords:
stochastic DEA; chance-constrained models; two-stage network systems; efficiency
Summary:
In classic data envelopment analysis models, two-stage network structures are studied in cases in which the input/output data set are deterministic. In many real applications, however, we face uncertainty. This paper proposes a two-stage network DEA model when the input/output data are stochastic. A stochastic two-stage network DEA model is formulated based on the chance-constrained programming. Linearization techniques and the assumption of single underlying factor of the data are used to construct the equivalent deterministic linear programming model. The relationship between the stochastic efficiency of each stage and stochastic centralized efficiency of the whole process, at different confidence levels, is discussed. To illustrate the real applicability of the proposed approach, a real case on 16 commercial banks in China is given.
References:
[1] Azadi, M., Jafarian, M., Saen, R. F., Mirhedayatian, S. M.: A new fuzzy DEA model for evaluation of efficiency and effectiveness of suppliers in sustainable supply chain management context. Comp. Oper. Res. 54 (2015), 274-285. DOI  | MR 3281255
[2] Charnes, A., Cooper, W. W.: Management Models and Industrial Applications of Linear Programming. John Wiley and Sons, Inc., New York 1961. MR 0157773
[3] Charnes, A., Cooper, W. W.: Programming with linear fractional functionals. Naval Research Logistics Quarterly 9 (1962), 3-4, 181-186. DOI  | MR 0152370
[4] Charnes, A., Cooper, W. W.: Goal programming and multiple objective optimizations: Part 1. Europ. J. Oper. Res. 1 (1977), 1, 39-54. DOI  | MR 0452646
[5] Charnes, A., Cooper, W. W., Rhodes, E.: Measuring the efficiency of decision making units. Europ. J. 0per. Res. 2 (1978), 6, 429-444. DOI  | MR 0525905 | Zbl 0425.90086
[6] Chen, Y., Cook, W. D., Li, N., Zhu, J.: Additive efficiency decomposition in two-stage DEA. Europ. J. Oper. Res. 196 (2009), 3, 1170-1176. DOI 
[7] Coelli, T. J., Rao, D. S. P., O'Donnell, C. J., Battese, G. E.: An introduction to efficiency and productivity analysis. Springer Science Business Media, 2005.
[8] Cook, W. D., Liang, Li., Zhu, J.: Measuring performance of two-stage network structures by DEA: a review and future perspective. Omega 38 (2010), 6, 423-430. DOI 
[9] Cooper, W. W., Huang, Z., Lelas, V., Li, S. X., Olesen, O. B.: Chance constrained programming formulations for stochastic characterizations of efficiency and dominance in DEA. J. Product. Anal. 9 (1998), 1, 53-79. DOI 10.1023/A:1018320430249
[10] Cooper, W. W., Huang, Z., Lelas, V., Li, S. X.: Satisficing DEA models under chance constraints. J. Product. Anal. 66 (1996), 4, 279-295. DOI  | MR 1409847
[11] Cooper, W. W., Seiford, L. M., Tone, K.: Introduction to data envelopment analysis and its uses: with DEA-solver software and references. Springer Science and Business Media, 2006.
[12] Dotoli, M., Epicoco, N., Falagario, M., Sciancalepore, F.: A cross-efficiency fuzzy data envelopment analysis technique for performance evaluation of decision making units under uncertainty. Comp. Industr. Engrg. 79 (2015), 103-114. DOI 
[13] Dyson, R. G., Allen, R., Camanho, A. S., Podinovski, V. V., Sarrico, C. S., Shale, E. A.: Pitfalls and protocols in DEA. Europ. J. Oper. Res. 132 (2001), 2, 245-259. DOI 
[14] Färe, R., Grosskopf, S., Whittaker, G.: Network Dea. In Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis. Springer, Boston 2007, pp. 209-240. DOI 
[15] Hahn, G. J., Sens, T., Decouttere, C., Vandaele, N.GrosskopfJ.: A multi-criteria approach to robust outsourcing decision-making in stochastic manufacturing systems. Comp. Industr. Engrg. 98 (2016), 275-288. DOI 
[16] Hua, Z., Bian, Y.: Performance measurement for network DEA with undesirable factors. Int. J. Management Decision Making 9 (2008), 2, 141-153. DOI 
[17] Huang, Z., Li, S. X.: Dominance stochastic models in data envelopment analysis. Europ. J. Oper. Res. 95 (1996), 2, 390-403. DOI 
[18] Izadikhah, M., Saen, R. F.: Assessing sustainability of supply chains by chance-constrained two-stage DEA model in the presence of undesirable factors. Comp. Oper. Res. 100 (2018), 343-367. DOI  | MR 3854885
[19] Kahane, Y.: Determination of the product mix and the business policy of an insurance company - A portfolio approach. Management Sci. 23 (1977), 10, 1060-1069. DOI 
[20] Kao, C., Hwang, S. N.: Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. Europ. J. Oper. Res. 185 (2008), 1, 418-429. DOI 
[21] Khalili-Damghani, K., Shahmir, Z.: Uncertain network data envelopment analysis with undesirable outputs to evaluate the efficiency of electricity power production and distribution processes. Comp. Industr. Engrg. 88 (2015), 131-150. DOI 
[22] Kordrostami, S., Amirteimoori, A.: Un-desirable factors in multi-component performance measurement. Appl. Math. Comput. 171 (2005), 2, 721-729. DOI  | MR 2199661
[23] Liang, L., Cook, W. D., Zhu, J.: DEA models for two‐stage processes: Game approach and efficiency decomposition. Naval Research Logistics (NRL) 55 (2008), 7, 643-653. DOI  | MR 2450593
[24] Liu, S. T.: Restricting weight flexibility in fuzzy two-stage DEA. Comp. Industr. Engrg. 74 (2014), 149-160. DOI 
[25] Liu, W., Zhou, Z., Ma, C., Liu, D., Shen, W.: Two-stage DEA models with undesirable input-intermediate-outputs. Omega 56 (2015), 74-87. DOI  | MR 3362977
[26] Lu, C. C.: Robust data envelopment analysis approaches for evaluating algorithmic performance. Comput. Industr. Engrg. 81 (2015), 78-89. DOI 
[27] Maghbouli, M., Amirteimoori, A., Kordrostami, S.: Two-stage network structures with undesirable outputs: A DEA based approach. Measurement 48 (2014), 109-118. DOI 
[28] Mehdizadeh, S., Amirteimoori, A., Charles, V., Behzadi, M. H., Kordrostami, S.: Measuring the efficiency of two-stage network processes: A satisficing DEA approach. J. Oper. Res. Soc. 72 (2021), 2, 354-366. DOI 
[29] Moheb-Alizadeh, H., Handfield, R., Warsing, D.: Efficient and sustainable closed-loop supply chain network design: A two-stage stochastic formulation with a hybrid solution methodology. J. Cleaner Product. 308 (2021), 25, 1273-1323. DOI 
[30] Olesen, O. B., Petersen, N. C.: Foundation of chance constrained data envelopment analysis for Pareto-Koopmann efficient production possibility sets. In: Proc. International DEA Symposium 2000, Measurement and Improvement in the 21st Century, The University of Queensland. 2000, pp. 313-349.
[31] Paradi, J. C., Zhu, H.: A survey on bank branch efficiency and performance research with data envelopment analysis. Omega 41 (2013), 1, 61-79. DOI 
[32] Ray, S. C.: Data Envelopment Analysis: Theory and Techniques for Economics and Operations Research. Cambridge University Press 2004. DOI  | MR 2066051
[33] Sharpe, W. F.: A simplified model for portfolio analysis. Management Sci. 9 (1963), 2, 277-293. DOI 
[34] Seiford, L. M., Zhu, J.: Profitability and marketability of the top 55 US commercial banks. Management Sci. 45 (1999), 9, 1270-1288. DOI 
[35] Wang, K., Huang, W., Wu, J., Liu, Y. N.: Efficiency measures of the Chinese commercial banking system using an additive two-stage DEA. Omega 44 (2014), 5-20. DOI 
[36] Wanke, P., Tsionas, M. G., Chen, Z., Antunes, J. M.: Dynamic network DEA and SFA models for accounting and financial indicators with an analysis of super-efficiency in stochastic frontiers: An efficiency comparison in OECD banking. Int. Rev. Econom. Finance 69 (2020), 456-468. DOI 
[37] Wei, G., Chen, J., Wang, J.: Stochastic efficiency analysis with a reliability consideration. Omega 48 (2014), 1-9. DOI 
[38] Yang, F., Wu, D., Liang, L., Bi, G., Wu, D. D.: Supply chain DEA: production possibility set and performance evaluation model. Ann. Oper. Res. 185 (2011), 1, 195-211. DOI  | MR 2788794
[39] Zhou, Z., Lin, L., Xiao, H., Ma, C., Wu, S.: Stochastic network DEA models for two-stage systems under the centralized control organization mechanism. Comp. Industr. Engrg. 110 (2017), 404-412. DOI 
[40] Zhou, Z., Sun, W., Xiao, H., Jin, Q., Liu, W.: Stochastic leader-follower DEA models for two-stage systems. J. Management Sci. Engrg. 6 (2021), 3, 413-434. DOI 
[41] Zhu, J.: Quantitative models for performance evaluation and benchmarking: data envelopment analysis with spreadsheets. J. Management Sci. Engrg. 2 (2009). MR 2469202
[42] Zhu, J., Cook, W. D., eds: Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis. Springer Science and Business Media, 2007. DOI 
Partner of
EuDML logo