[1] Azadi, M., Jafarian, M., Saen, R. F., Mirhedayatian, S. M.:
A new fuzzy DEA model for evaluation of efficiency and effectiveness of suppliers in sustainable supply chain management context. Comp. Oper. Res. 54 (2015), 274-285.
DOI |
MR 3281255
[2] Charnes, A., Cooper, W. W.:
Management Models and Industrial Applications of Linear Programming. John Wiley and Sons, Inc., New York 1961.
MR 0157773
[3] Charnes, A., Cooper, W. W.:
Programming with linear fractional functionals. Naval Research Logistics Quarterly 9 (1962), 3-4, 181-186.
DOI |
MR 0152370
[4] Charnes, A., Cooper, W. W.:
Goal programming and multiple objective optimizations: Part 1. Europ. J. Oper. Res. 1 (1977), 1, 39-54.
DOI |
MR 0452646
[5] Charnes, A., Cooper, W. W., Rhodes, E.:
Measuring the efficiency of decision making units. Europ. J. 0per. Res. 2 (1978), 6, 429-444.
DOI |
MR 0525905 |
Zbl 0425.90086
[6] Chen, Y., Cook, W. D., Li, N., Zhu, J.:
Additive efficiency decomposition in two-stage DEA. Europ. J. Oper. Res. 196 (2009), 3, 1170-1176.
DOI
[7] Coelli, T. J., Rao, D. S. P., O'Donnell, C. J., Battese, G. E.: An introduction to efficiency and productivity analysis. Springer Science Business Media, 2005.
[8] Cook, W. D., Liang, Li., Zhu, J.:
Measuring performance of two-stage network structures by DEA: a review and future perspective. Omega 38 (2010), 6, 423-430.
DOI
[9] Cooper, W. W., Huang, Z., Lelas, V., Li, S. X., Olesen, O. B.:
Chance constrained programming formulations for stochastic characterizations of efficiency and dominance in DEA. J. Product. Anal. 9 (1998), 1, 53-79.
DOI 10.1023/A:1018320430249
[10] Cooper, W. W., Huang, Z., Lelas, V., Li, S. X.:
Satisficing DEA models under chance constraints. J. Product. Anal. 66 (1996), 4, 279-295.
DOI |
MR 1409847
[11] Cooper, W. W., Seiford, L. M., Tone, K.: Introduction to data envelopment analysis and its uses: with DEA-solver software and references. Springer Science and Business Media, 2006.
[12] Dotoli, M., Epicoco, N., Falagario, M., Sciancalepore, F.:
A cross-efficiency fuzzy data envelopment analysis technique for performance evaluation of decision making units under uncertainty. Comp. Industr. Engrg. 79 (2015), 103-114.
DOI
[13] Dyson, R. G., Allen, R., Camanho, A. S., Podinovski, V. V., Sarrico, C. S., Shale, E. A.:
Pitfalls and protocols in DEA. Europ. J. Oper. Res. 132 (2001), 2, 245-259.
DOI
[14] Färe, R., Grosskopf, S., Whittaker, G.:
Network Dea. In Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis. Springer, Boston 2007, pp. 209-240.
DOI
[15] Hahn, G. J., Sens, T., Decouttere, C., Vandaele, N.GrosskopfJ.:
A multi-criteria approach to robust outsourcing decision-making in stochastic manufacturing systems. Comp. Industr. Engrg. 98 (2016), 275-288.
DOI
[16] Hua, Z., Bian, Y.:
Performance measurement for network DEA with undesirable factors. Int. J. Management Decision Making 9 (2008), 2, 141-153.
DOI
[17] Huang, Z., Li, S. X.:
Dominance stochastic models in data envelopment analysis. Europ. J. Oper. Res. 95 (1996), 2, 390-403.
DOI
[18] Izadikhah, M., Saen, R. F.:
Assessing sustainability of supply chains by chance-constrained two-stage DEA model in the presence of undesirable factors. Comp. Oper. Res. 100 (2018), 343-367.
DOI |
MR 3854885
[19] Kahane, Y.:
Determination of the product mix and the business policy of an insurance company - A portfolio approach. Management Sci. 23 (1977), 10, 1060-1069.
DOI
[20] Kao, C., Hwang, S. N.:
Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. Europ. J. Oper. Res. 185 (2008), 1, 418-429.
DOI
[21] Khalili-Damghani, K., Shahmir, Z.:
Uncertain network data envelopment analysis with undesirable outputs to evaluate the efficiency of electricity power production and distribution processes. Comp. Industr. Engrg. 88 (2015), 131-150.
DOI
[22] Kordrostami, S., Amirteimoori, A.:
Un-desirable factors in multi-component performance measurement. Appl. Math. Comput. 171 (2005), 2, 721-729.
DOI |
MR 2199661
[23] Liang, L., Cook, W. D., Zhu, J.:
DEA models for two‐stage processes: Game approach and efficiency decomposition. Naval Research Logistics (NRL) 55 (2008), 7, 643-653.
DOI |
MR 2450593
[24] Liu, S. T.:
Restricting weight flexibility in fuzzy two-stage DEA. Comp. Industr. Engrg. 74 (2014), 149-160.
DOI
[25] Liu, W., Zhou, Z., Ma, C., Liu, D., Shen, W.:
Two-stage DEA models with undesirable input-intermediate-outputs. Omega 56 (2015), 74-87.
DOI |
MR 3362977
[26] Lu, C. C.:
Robust data envelopment analysis approaches for evaluating algorithmic performance. Comput. Industr. Engrg. 81 (2015), 78-89.
DOI
[27] Maghbouli, M., Amirteimoori, A., Kordrostami, S.:
Two-stage network structures with undesirable outputs: A DEA based approach. Measurement 48 (2014), 109-118.
DOI
[28] Mehdizadeh, S., Amirteimoori, A., Charles, V., Behzadi, M. H., Kordrostami, S.:
Measuring the efficiency of two-stage network processes: A satisficing DEA approach. J. Oper. Res. Soc. 72 (2021), 2, 354-366.
DOI
[29] Moheb-Alizadeh, H., Handfield, R., Warsing, D.:
Efficient and sustainable closed-loop supply chain network design: A two-stage stochastic formulation with a hybrid solution methodology. J. Cleaner Product. 308 (2021), 25, 1273-1323.
DOI
[30] Olesen, O. B., Petersen, N. C.: Foundation of chance constrained data envelopment analysis for Pareto-Koopmann efficient production possibility sets. In: Proc. International DEA Symposium 2000, Measurement and Improvement in the 21st Century, The University of Queensland. 2000, pp. 313-349.
[31] Paradi, J. C., Zhu, H.:
A survey on bank branch efficiency and performance research with data envelopment analysis. Omega 41 (2013), 1, 61-79.
DOI
[32] Ray, S. C.:
Data Envelopment Analysis: Theory and Techniques for Economics and Operations Research. Cambridge University Press 2004.
DOI |
MR 2066051
[33] Sharpe, W. F.:
A simplified model for portfolio analysis. Management Sci. 9 (1963), 2, 277-293.
DOI
[34] Seiford, L. M., Zhu, J.:
Profitability and marketability of the top 55 US commercial banks. Management Sci. 45 (1999), 9, 1270-1288.
DOI
[35] Wang, K., Huang, W., Wu, J., Liu, Y. N.:
Efficiency measures of the Chinese commercial banking system using an additive two-stage DEA. Omega 44 (2014), 5-20.
DOI
[36] Wanke, P., Tsionas, M. G., Chen, Z., Antunes, J. M.:
Dynamic network DEA and SFA models for accounting and financial indicators with an analysis of super-efficiency in stochastic frontiers: An efficiency comparison in OECD banking. Int. Rev. Econom. Finance 69 (2020), 456-468.
DOI
[37] Wei, G., Chen, J., Wang, J.:
Stochastic efficiency analysis with a reliability consideration. Omega 48 (2014), 1-9.
DOI
[38] Yang, F., Wu, D., Liang, L., Bi, G., Wu, D. D.:
Supply chain DEA: production possibility set and performance evaluation model. Ann. Oper. Res. 185 (2011), 1, 195-211.
DOI |
MR 2788794
[39] Zhou, Z., Lin, L., Xiao, H., Ma, C., Wu, S.:
Stochastic network DEA models for two-stage systems under the centralized control organization mechanism. Comp. Industr. Engrg. 110 (2017), 404-412.
DOI
[40] Zhou, Z., Sun, W., Xiao, H., Jin, Q., Liu, W.:
Stochastic leader-follower DEA models for two-stage systems. J. Management Sci. Engrg. 6 (2021), 3, 413-434.
DOI
[41] Zhu, J.:
Quantitative models for performance evaluation and benchmarking: data envelopment analysis with spreadsheets. J. Management Sci. Engrg. 2 (2009).
MR 2469202
[42] Zhu, J., Cook, W. D., eds:
Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis. Springer Science and Business Media, 2007.
DOI