Previous |  Up |  Next

Article

Keywords:
t-norm; t-conorm; ordinal sum; bounded lattice
Summary:
Recently, the topic of construction methods for triangular norms (triangular conorms), uninorms, nullnorms, etc. has been studied widely. In this paper, we propose construction methods for triangular norms (t-norms) and triangular conorms (t-conorms) on bounded lattices by using interior and closure operators, respectively. Thus, we obtain some proposed methods given by Ertuğrul, Karaçal, Mesiar [15] and Çaylı [8] as results. Also, we give some illustrative examples. Finally, we conclude that the introduced construction methods can not be generalized by induction to a modified ordinal sum for t-norms and t-conorms on bounded lattices.
References:
[1] Aşıcı, E., Mesiar, R.: On generating uninorms on some special classes of bounded lattices. Fuzzy Sets Systems 439 (2022), 102-125. DOI  | MR 4418950
[2] Aşıcı, E.: Construction methods for triangular norms and triangular conorms on appropriate bounded lattices. Iran J. Fuzzy Systems 19 (2022), 125-140. MR 4284673
[3] Aşıcı, E., Mesiar, R.: New constructions of triangular norms and triangular conorms on an arbitrary bounded lattice. Int. J. Gen. Systems 49 (2020), 143-160. DOI  | MR 4074092
[4] Aşıcı, E., Mesiar, R.: Alternative approaches to obtain t-norms and t-conorms on bounded lattices. Iran J. Fuzzy Systems 17 (2020), 121-138. MR 4155854
[5] Aşıcı, E.: Equivalence classes of uninorms. Filomat 33 (2019), 2, 571-582. DOI  | MR 3939974
[6] Birkhoff, G.: Lattice Theory. Third edition. Providence, 1967. MR 0227053
[7] Clifford, A.: Naturally totally ordered commutative semigroups. Am. J. Math. 76 (1954), 631-646. DOI  | MR 0062118
[8] Çaylı, G. D.: Some methods to obtain t-norms and t-conorms on bounded lattices. Kybernetika 55 (2019) 273-294. DOI  | MR 4014587
[9] Çaylı, G. D.: On a new class of t-norms and t-conorms on bounded lattices. Fuzzy Sets Systems 332 (2018), 129-143. DOI  | MR 3732255
[10] Dan, Y., Hu, B. Q., Qiao, J.: New construction of t-norms and t-conorms on bounded lattices. Fuzzy Sets Systems, in press. MR 4109061
[11] Drossos, C. A., Navara, M.: Generalized t-conorms and closure operators. In: EUFIT 96, Aachen 1996.
[12] Drossos, C. A.: Generalized t-norm structures. Fuzzy Sets Systems 104 (1999), 53-59. DOI  | MR 1685809
[13] Dvořák, A., Holčapek, M.: New construction of an ordinal sum of t-norms and t-conorms on bounded lattices. Inf. Sci. 515 (2020), 116-131. DOI  | MR 4042588
[14] Engelking, R.: General Topology. Heldermann Verlag, Berlin 1989. MR 1039321 | Zbl 1281.54001
[15] Ertuğrul, U., Karaçal, F., Mesiar, R.: Modified ordinal sums of triangular norms and triangular conorms on bounded lattices. Int. J. Intell. Systems 30 (2015), 807-817. DOI 
[16] Everett, C. J.: Closure operators and Galois theory in lattices. Trans. Amer. Math. Soc. 55 (1944), 514-525. DOI  | MR 0010556
[17] Goguen, J. A.: L-fuzzy sets. J. Math. Anal. Appl. 18 (1967), 145-174. DOI  | MR 0224391
[18] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, 2009. MR 2538324 | Zbl 1206.68299
[19] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. MR 1790096 | Zbl 1087.20041
[20] Medina, J.: Characterizing when an ordinal sum of t-norms is a t-norm on bounded lattices. Fuzzy Sets Systems 202 (2012), 75-88. DOI  | MR 2934787
[21] Mostert, P. S., Shields, A. L.: On the structure of semi-groups on a compact manifold with boundary. Ann. Math., II. Ser. 65 (1957), 117-143. DOI 10.2307/1969668 | MR 0084103
[22] Ouyang, Y., Zhang, H-P.: Constructing uninorms via closure operators on a bounded lattice. Fuzzy Sets Systems 395 (2020), 93-106. DOI  | MR 4109063
[23] Ouyang, Y., Zhang, H-P., Baets, B. D.: Ordinal sums of triangular norms on a bounded lattice. Fuzzy Sets Systrms, in press. DOI  | MR 4210979
[24] Saminger, S.: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Systems 325 (2006), 1403-1416. DOI  | MR 2226983 | Zbl 1099.06004
[25] Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10 (1960), 313-334. DOI  | MR 0115153 | Zbl 0136.39301
Partner of
EuDML logo