[1] Aşıcı, E., Mesiar, R.:
On generating uninorms on some special classes of bounded lattices. Fuzzy Sets Systems 439 (2022), 102-125.
DOI |
MR 4418950
[2] Aşıcı, E.:
Construction methods for triangular norms and triangular conorms on appropriate bounded lattices. Iran J. Fuzzy Systems 19 (2022), 125-140.
MR 4284673
[3] Aşıcı, E., Mesiar, R.:
New constructions of triangular norms and triangular conorms on an arbitrary bounded lattice. Int. J. Gen. Systems 49 (2020), 143-160.
DOI |
MR 4074092
[4] Aşıcı, E., Mesiar, R.:
Alternative approaches to obtain t-norms and t-conorms on bounded lattices. Iran J. Fuzzy Systems 17 (2020), 121-138.
MR 4155854
[5] Aşıcı, E.:
Equivalence classes of uninorms. Filomat 33 (2019), 2, 571-582.
DOI |
MR 3939974
[6] Birkhoff, G.:
Lattice Theory. Third edition. Providence, 1967.
MR 0227053
[7] Clifford, A.:
Naturally totally ordered commutative semigroups. Am. J. Math. 76 (1954), 631-646.
DOI |
MR 0062118
[8] Çaylı, G. D.:
Some methods to obtain t-norms and t-conorms on bounded lattices. Kybernetika 55 (2019) 273-294.
DOI |
MR 4014587
[9] Çaylı, G. D.:
On a new class of t-norms and t-conorms on bounded lattices. Fuzzy Sets Systems 332 (2018), 129-143.
DOI |
MR 3732255
[10] Dan, Y., Hu, B. Q., Qiao, J.:
New construction of t-norms and t-conorms on bounded lattices. Fuzzy Sets Systems, in press.
MR 4109061
[11] Drossos, C. A., Navara, M.: Generalized t-conorms and closure operators. In: EUFIT 96, Aachen 1996.
[12] Drossos, C. A.:
Generalized t-norm structures. Fuzzy Sets Systems 104 (1999), 53-59.
DOI |
MR 1685809
[13] Dvořák, A., Holčapek, M.:
New construction of an ordinal sum of t-norms and t-conorms on bounded lattices. Inf. Sci. 515 (2020), 116-131.
DOI |
MR 4042588
[15] Ertuğrul, U., Karaçal, F., Mesiar, R.:
Modified ordinal sums of triangular norms and triangular conorms on bounded lattices. Int. J. Intell. Systems 30 (2015), 807-817.
DOI
[16] Everett, C. J.:
Closure operators and Galois theory in lattices. Trans. Amer. Math. Soc. 55 (1944), 514-525.
DOI |
MR 0010556
[17] Goguen, J. A.:
L-fuzzy sets. J. Math. Anal. Appl. 18 (1967), 145-174.
DOI |
MR 0224391
[18] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.:
Aggregation Functions. Cambridge University Press, 2009.
MR 2538324 |
Zbl 1206.68299
[19] Klement, E. P., Mesiar, R., Pap, E.:
Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.
MR 1790096 |
Zbl 1087.20041
[20] Medina, J.:
Characterizing when an ordinal sum of t-norms is a t-norm on bounded lattices. Fuzzy Sets Systems 202 (2012), 75-88.
DOI |
MR 2934787
[21] Mostert, P. S., Shields, A. L.:
On the structure of semi-groups on a compact manifold with boundary. Ann. Math., II. Ser. 65 (1957), 117-143.
DOI 10.2307/1969668 |
MR 0084103
[22] Ouyang, Y., Zhang, H-P.:
Constructing uninorms via closure operators on a bounded lattice. Fuzzy Sets Systems 395 (2020), 93-106.
DOI |
MR 4109063
[23] Ouyang, Y., Zhang, H-P., Baets, B. D.:
Ordinal sums of triangular norms on a bounded lattice. Fuzzy Sets Systrms, in press.
DOI |
MR 4210979
[24] Saminger, S.:
On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Systems 325 (2006), 1403-1416.
DOI |
MR 2226983 |
Zbl 1099.06004