Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
ideal counting function; Erdős-Kac theorem; quadratic field; short intervals; mean value
Summary:
Let $\mathbb {K}$ be a quadratic field over the rational field and $a_{\mathbb {K}} ( n)$ be the number of nonzero integral ideals with norm $n$. We establish Erdős-Kac type theorems weighted by $a_{\mathbb {K}} (n)^l$ and $a_{\mathbb {K}} (n^2 )^l$ of quadratic field in short intervals with $l\in \mathbb {Z}^{+}$. We also get asymptotic formulae for the average behavior of $a_{\mathbb {K}}(n)^l$ and $a_{\mathbb {K}} ( n^2)^l$ in short intervals.
References:
[1] Bump, D.: Automorphic Forms and Representations. Cambridge Studies in Advanced Mathematics 55. Cambridge University Press, Cambridge (1997). DOI 10.1017/CBO9780511609572 | MR 1431508 | Zbl 0868.11022
[2] Chandrasekharan, K., Good, A.: On the number of integral ideals in Galois extensions. Monatsh. Math. 95 (1983), 99-109. DOI 10.1007/BF01323653 | MR 0697150 | Zbl 0498.12009
[3] Chandrasekharan, K., Narasimhan, R.: The approximate functional equation for a class of zeta-functions. Math. Ann. 152 (1963), 30-64. DOI 10.1007/BF01343729 | MR 0153643 | Zbl 0116.27001
[4] Erdős, P., Kac, M.: On the Gaussian law of errors in the theory of additive functions. Proc. Natl. Acad. Sci. USA 25 (1939), 206-207. DOI 10.1073/pnas.25.4.206 | MR 0002374 | Zbl 0021.20702
[5] Huxley, M. N.: On the difference between consecutive primes. Invent. Math. 15 (1972), 164-170. DOI 10.1007/BF01418933 | MR 0292774 | Zbl 0241.10026
[6] Landau, E.: Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale. German B. G. Teubner, Leipzig (1927),\99999JFM99999 53.0141.09. MR 0031002
[7] Liu, X.-L., Yang, Z.-S.: Weighted Erdős-Kac type theorems over Gaussian field in short intervals. Acta Math. Hung. 162 (2020), 465-482. DOI 10.1007/s10474-020-01087-6 | MR 4173309 | Zbl 1474.11169
[8] Lü, G., Wang, Y.: Note on the number of integral ideals in Galois extensions. Sci. China, Math. 53 (2010), 2417-2424. DOI 10.1007/s11425-010-4091-7 | MR 2718837 | Zbl 1273.11160
[9] Lü, G., Yang, Z.: The average behavior of the coefficients of Dedekind zeta function over square numbers. J. Number Theory 131 (2011), 1924-1938. DOI 10.1016/j.jnt.2011.01.018 | MR 2811559 | Zbl 1261.11073
[10] Nowak, W. G.: On the distribution of integer ideals in algebraic number fields. Math. Nachr. 161 (1993), 59-74. DOI 10.1002/mana.19931610107 | MR 1251010 | Zbl 0803.11061
[11] Wu, J., Wu, Q.: Mean values for a class of arithmetic functions in short intervals. Math. Nachr. 293 (2020), 178-202. DOI 10.1002/mana.201800276 | MR 4060372 | Zbl 07197944
[12] Zhai, W.: Asymptotics for a class of arithmetic functions. Acta Arith. 170 (2015), 135-160. DOI 10.4064/aa170-2-3 | MR 3383642 | Zbl 1377.11106
Partner of
EuDML logo