Previous |  Up |  Next

Article

Keywords:
$F$-manifold; Poisson algebra; $F$-manifold algebra
Summary:
$F$-manifold algebras are focused on the algebraic properties of the tangent sheaf of $F$-manifolds. The local classification of 3-dimensional $F$-manifolds has been given in A. Basalaev, C. Hertling (2021). We study the classification of 3-dimensional $F$-manifold algebras over the complex field $\mathbb {C}$.
References:
[1] Bai, C., Meng, D.: The classification of Novikov algebras in low dimensions. J. Phys. A, Math. Gen. 34 (2001), 1581-1594. DOI 10.1088/0305-4470/34/8/305 | MR 1818753 | Zbl 1001.17002
[2] Basalaev, A., Hertling, C.: 3-dimensional $F$-manifolds. Lett. Math. Phys. 111 (2021), Article ID 90, 50 pages. DOI 10.1007/s11005-021-01432-y | MR 4282746 | Zbl 1471.32040
[3] Hassine, A. Ben, Chtioui, T., Maalaoui, M. A., Mabrouk, S.: On Hom-$F$-manifold algebras and quantization. Available at https://arxiv.org/abs/2102.05595 (2021), 23 pages. MR 4456933
[4] Morales, J. A. Cruz, Gutierrez, J. A., Torres-Gomez, A.: $F$-algebra-Rinehart pairs and super $F$-algebroids. Available at https://arxiv.org/abs/1904.04724v2 (2019), 14 pages. MR 4515932
[5] Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994). MR 1300632 | Zbl 0839.17010
[6] Ding, M., Chen, Z., Li, J.: $F$-manifold color algebras. Available at https://arxiv.org/abs/2101.00959v2 (2021), 13 pages.
[7] Dotsenko, V.: Algebraic structures of $F$-manifolds via pre-Lie algebras. Ann. Mat. Pura Appl. (4) 198 (2019), 517-527. DOI 10.1007/s10231-018-0787-z | MR 3927168 | Zbl 07041963
[8] Dubrovin, B.: Geometry of 2D topological field theories. Integrable Systems and Quantum Groups Lecture Notes in Mathematics 1620. Springer, Berlin (1996), 120-348. DOI 10.1007/BFb0094793 | MR 1397274 | Zbl 0841.58065
[9] Fulton, W., Harris, J.: Representation Theory: A First Course. Graduate Texts in Mathematics 129. Springer, New York (1991). DOI 10.1007/978-1-4612-0979-9 | MR 1153249 | Zbl 0744.22001
[10] Hertling, C.: Frobenius Manifolds and Moduli Spaces for Singularities. Cambridge Tracts in Mathematics 151. Cambridge University Press, Cambridge (2002). DOI 10.1017/CBO9780511543104 | MR 1924259 | Zbl 1023.14018
[11] Hertling, C., Manin, Y.: Weak Frobenius manifolds. Int. Math. Res. Not. 1999 (1999), 277-286. DOI 10.1155/S1073792899000148 | MR 1680372 | Zbl 0960.58003
[12] Liu, J., Bai, C., Sheng, Y.: Noncommutative Poisson bialgebras. J. Algebra 556 (2020), 35-66. DOI 10.1016/j.jalgebra.2020.03.009 | MR 4082054 | Zbl 1475.17038
[13] Liu, J., Sheng, Y., Bai, C.: $F$-manifold algebras and deformation quantization via pre-Lie algebras. J. Algebra 559 (2020), 467-495. DOI 10.1016/j.jalgebra.2020.04.029 | MR 4097911 | Zbl 1442.17003
[14] Ni, X., Bai, C.: Poisson bialgebras. J. Math. Phys. 54 (2013), Article ID 023515, 14 pages. DOI 10.1063/1.4792668 | MR 3076642 | Zbl 1290.17019
[15] Patera, J., Sharp, R. T., Winternitz, P., Zassenhaus, H.: Invariants of real low dimension Lie algebras. J. Math. Phys. 17 (1976), 986-994. DOI 10.1063/1.522992 | MR 0404362 | Zbl 0357.17004
[16] Šnobl, L., Winternitz, P.: Classification and Identification of Lie Algebras. CRM Monograph Series 33. AMS, Providence (2014). DOI 10.1090/crmm/033 | MR 3184730 | Zbl 1331.17001
[17] Uchino, K.: Quantum analogy of Poisson geometry, related dendriform algebras and Rota-Baxter operators. Lett. Math. Phys. 85 (2008), 91-109. DOI 10.1007/s11005-008-0259-2 | MR 2443932 | Zbl 1243.17002
Partner of
EuDML logo