[1] I.Byrnes, C., Isidori, A.:
New results and examples in nonlinear feedback stabilization. Systems Control Lett. 12 (1989), 437-442.
DOI |
MR 1005310
[2] Chabour, R., Florchinger, P.:
Exponential mean square stability of partially linear stochastic systems. Appl. Math. Lett. 6 (1993), 6, 91-95.
DOI |
MR 1348472
[3] Dani, A., Chung, S. J., Hutchison, S.:
Observer design for stochastic nonlinear systems via contraction-based incremental stability. IEEE Trans. Automat. Control 60 (2014), 3, 700-714.
DOI |
MR 3318397
[4] Ding, D., Han, Q. L., Wang, Z., Ge, X.:
Recursive filtering of distributed cyber-physical systems with attack detection. IEEE Trans. Systems Man Cybernet.: Systems 51 (2021), 10, 6466-6476.
DOI |
MR 0697005
[5] Ding, D., Wang, Z., Han, Q. L.:
Neural-network-based consensus control for multiagent systems with input constraints: The event-triggered case. IEEE Trans. Cybernet. 50 (2020), 8, 3719-3730.
DOI
[6] Ferfera, A., Hammami, M. A.: Stabilization of composite nonlinear systems by a estimated state feedback law. In: Proc. IFAC Symposium on Nonlinear Control System Design (NOLCOS 95), Tahoe City 1995, pp. 697-701.
[7] Florchinger, P.: Stabilization of partially linear stochastic systems via estimated state feedback law. In: Proc. IFAC Symposium on Nonlinear Control System Design (NOLCOS 95), Tahoe City 1995, pp. 753-758.
[8] Florchinger, P.:
Global stabilization of composite stochastic systems. Int. J. Comput. Math. Appl. 33 (1997), 6, 127-135.
DOI |
MR 1449219
[9] Florchinger, P.:
Global stabilization of nonlinear composite stochastic systems. In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999, pp. 5036-5037.
MR 1449219
[10] Ghanes, M., Leon, J. De, Barbot, J.:
Observer design for nonlinear systems under unknown time-varying delays. IEEE Trans. Automat. Control 58 (2013), 1529-1534.
DOI |
MR 3065135
[11] Gauthier, J. P., Kupka, I.:
Deterministic Observation Theory and Applications. Cambridge University Press, Cambridge 2001.
MR 1862985
[12] Hu, X.:
On state observers for nonlinear systems. Systems Control Lett. 17 (1991), 465-473.
DOI |
MR 1138946
[13] Khasminskii, R. Z.:
Stochastic Stability of Differential Equations. Sijthoff and Noordhoff, Alphen aan den Rijn 1980.
DOI |
Zbl 1241.60002
[14] Kokotovic, P. V., Sussmann, H. J.:
A positive real condition for global stabilization of nonlinear systems. Systems Control Lett. 13 (1989), 125-133.
DOI |
MR 1014238
[15] Kou, S. R., Elliott, D. L., Tarn, T. G.:
Exponential observers for nonlinear dynamic systems. Inform. Control 29 (1975), 204-216.
DOI |
MR 0384227
[16] Luenberger, D. G.:
Observing the state of a linear system. IEEE Trans. Military Electron. 8 (1964), 74-80.
DOI
[17] Luenberger, D. G.:
An introduction to observers. IEEE Trans. Automat. Control 16 (1971), 596-602.
DOI
[18] Lin, Z., Saberi, A.:
Semi-global stabilization of partially linear composite systems via linear dynamic state feedback. In: Proc. 32nd IEEE Conference on Decision and Control, San Antonio 1993, pp. 2538-2543.
MR 1302561
[19] Saberi, A., Kokotovic, P. V., Sussmann, H. J.:
Global stabilization of partially linear composite systems. SIAM J. Control Optim. 28 (1990), 6, 1491-1503.
DOI |
MR 1075215
[20] Sontag, E. D.:
Smooth stabilization implies coprime factorization. IEEE Trans. Automat. Control 34 (1989), 435-443.
DOI |
MR 0987806
[21] Tarn, T. J., Rasis, Y.:
Observers for nonlinear stochastic systems. IEEE Trans. Automat. Control 21 (1976), 4, 441-448.
DOI |
MR 0411794
[22] J.Tsinias:
Sufficient Lyapunov-like conditions for stabilization. Math. Control Signals Systems 2 (1989), 343-357.
DOI |
MR 1015672
[23] Tsinias, J.:
Theorem on global stabilization of nonlinear systems by linear feedback. Systems Control Letters 17 (1991), 357-362.
DOI |
MR 1136537
[24] Wonham, W. M.:
On a matrix Riccati equation of stochastic control. SIAM J. Control Optim. 6 (1968), 4, 681-697.
DOI |
MR 0239161
[25] Wu, J., Karimi, H., Shi, P.:
Observer-based stabilization of stochastic systems with limited communication. Math. Problems Engrg. 2012 (2012), Article ID 781542, 17 pp.
MR 2964997
[26] Zhang, X. M., Han, Q. L., Ge, X., Zhang, B. L.:
Delay-variation-dependent criteria on extended dissipativity for discrete-time neural networks with time-varying delay. IEEE Trans. Neural Networks Learning Systems (2021), 1-10.
DOI |
MR 3453276
[27] Zhang, X. M., Han, Q. L., Wang, J.:
Admissible delay upper bounds for global asymptotic stability of neural networks with time-varying delays. IEEE Trans. Neural Networks Learning Systems 29 (2018), 11, 5319-5329.
DOI |
MR 3867847
[28] Zhou, L., Xiao, X., Lu, G.:
Observers for a Class of Nonlinear Systems with Time-Delay. Asian J. Control 11 (2009), 688-693.
DOI |
MR 2791315