[1] Bensoussan, A., Cakanyildirim, M., Sethi, S. P.:
Partially observed inventory systems: the case of zero-balance walk. SIAM J. Control Optim. 46 (2007), 176-209.
DOI
[2] Bertsekas, D. P., Shreve, S. E.:
Stochastic Optimal Control: The Discrete Time Case. Academic Press, New York 1978.
DOI |
MR 0511544 |
Zbl 0633.93001
[3] Carmon, Y., Shwartz, A.:
Markov decision processes with exponentially representable discounting. Oper. Res. Lett. 37 (2009), 51-55.
DOI |
MR 2488083 |
Zbl 1154.90610
[4] Cruz-Suárez, H., Montes-de-Oca, R.:
Discounted Markov control processes induced by deterministic systems. Kybernetika 42 (2006), 647-664.
MR 2296506
[5] Dynkin, E. B., Yushkevich, A. A.:
Controlled Markov Processes. Springer-Verlag, New York 1979.
DOI |
MR 0554083
[6] Elliott, R. J., Aggoun, L., Moore, J. B.:
Hidden Markov Models: Estimation and Control. Springer-Verlag, New York 1994.
DOI |
MR 1323178
[7] Feinberg, E. A., Shwartz, A.:
Constrained dynamic programming with two discount factors: applications and an algorithm. IEEE Trans. Automat. Control 44 (1999), 628-631.
DOI |
MR 1680195 |
Zbl 0957.90127
[8] González-Hernández, J., López-Martínez, R R., Minjárez-Sosa, J. A.:
Approximation, estimation and control of stochastic systems under a randomized discounted cost criterion. Kybernetika 45 (2009), 737-754.
DOI |
MR 2599109
[9] González-Hernández, J., López-Martínez, R. R., Minjárez-Sosa, J. A., R.Gabriel-Arguelles, J.:
Constrained Markov control processes with randomized discounted rate: infinite linear programming approach. Optim. Control Appl. Meth. 35 (2014), 575-591.
DOI |
MR 3262763
[10] García, Y. H., Diaz-Infante, S., Minjarez-Sosa, J. A.:
Partially observable queueing systems with controlled service rates under a discounted optimality criterion. Kybernetika 57 (2021), 493-512.
DOI |
MR 4299460
[11] Gordienko, E- I-, Salem, F. S.:
Robustness inequality for Markov control processes with unbounded costs. Syst. Control Lett. 33 (1998), 125-130.
DOI |
MR 1607814
[12] Gordienko, E., Lemus-Rodríguez, E., Montes-de-Oca, R.:
Discounted cost optimality problem: stability with respect to weak metrics. Math. Methods Oper. Res. 68 (2008), 77-96.
DOI |
MR 2429561
[13] Gordienko, E., Minjarez-Sosa, J. A.:
Adaptive control for discrete-time Markov processes with unbounded costs: discounted criterion. Kybernetika 34 (1998), 217-234.
MR 1621512
[14] Hernandez-Lerma, O.:
Adaptive Markov Control Processes. Springer-Verlag, New York 1989.
DOI |
MR 0995463
[15] Hernandez-Lerma, O., Runggaldier, W.:
Monotone approximations for convex stochastic control problems. J. Math. Syst. Estim. Control 4 (1994), 99-140.
MR 1298550
[16] Hernandez-Lerma, O., Munoz-de-Ozak, M.:
Discrete-time Markov control processes with discounted unbounded costs: optimality criteria. Kybernetika 28 (1992), 191-221.
DOI |
MR 1174656
[17] Hernández-Lerma, O., Lasserre, J. B.:
Discrete-Time Markov Control Processes: Basic Optimality Criteria. Springer-Verlag, New York 1996.
MR 1363487 |
Zbl 0840.93001
[18] Hilgert, N., Minjarez-Sosa, J. A.:
Adaptive policies for time-varying stochastic systems under discounted criterion. Math. Methods Oper. Res. 54 (2001), 491-505.
DOI |
MR 1890916
[19] Hinderer, K.:
Foundations of Non-stationary Dynamic Programming with Discrete Time parameter. In: Lecture Notes Oper. Res. 33, Springer, New York 1979.
MR 0267890
[20] Jasso-Fuentes, H., Menaldi, J. L., Prieto-Rumeau, T.:
Discrete-time control with non-constant discount factor. Math. Methods Oper. Res. 92 (2020), 377-399.
DOI |
MR 4182024
[21] Minjarez-Sosa, J. A.:
Approximation and estimation in Markov control processes under discounted criterion. Kybernetika 40 (2004), 681-690.
DOI |
MR 2120390
[22] Minjarez-Sosa, J. A.:
Markov control models with unknown random state-action-dependent discount factors. TOP 23 (2015), 743-772.
DOI |
MR 3407674
[23] Rieder, U.:
Measurable selection theorems for optimization problems. Manuscripta Math. 24 (1978), 115-131.
DOI |
MR 0493590 |
Zbl 0385.28005
[24] Runggaldier, W. J., Stettner, L.:
Approximations of Discrete Time Partially Observed Control Problems. Applied Mathematics Monographs CNR 6, Giardini, Pisa 1994.
DOI
[26] Wei, Q., Guo, X.:
Markov decision processes with state-dependent discount factors and unbounded rewards/costs. Oper. Res. Lett. 39 (2011), 368-274.
DOI |
MR 2835530