Previous |  Up |  Next

Article

Title: Stable periodic solutions in scalar periodic differential delay equations (English)
Author: Ivanov, Anatoli
Author: Shelyag, Sergiy
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 59
Issue: 1
Year: 2023
Pages: 69-76
Summary lang: English
.
Category: math
.
Summary: A class of nonlinear simple form differential delay equations with a $T$-periodic coefficient and a constant delay $\tau >0$ is considered. It is shown that for an arbitrary value of the period $T>4\tau -d_0$, for some $d_0>0$, there is an equation in the class such that it possesses an asymptotically stable $T$-period solution. The periodic solutions are constructed explicitly for the piecewise constant nonlinearities and the periodic coefficients involved, by reduction of the problem to one-dimensional maps. The periodic solutions and their stability properties are shown to persist when the nonlinearities are “smoothed” at the discontinuity points. (English)
Keyword: delay differential equations
Keyword: nonlinear negative feedback
Keyword: periodic coefficients
Keyword: periodic solutions
Keyword: stability
MSC: 34K13
MSC: 34K20
MSC: 34K39
idZBL: Zbl 07675575
idMR: MR4563017
DOI: 10.5817/AM2023-1-69
.
Date available: 2023-02-22T14:27:28Z
Last updated: 2023-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151551
.
Reference: [1] Berezansky, L., Braverman, E., Idels, L.: Nicholson’s blowflies differential equations revisited: Main results and open problems.Appl. Math. Model. 34 (2010), 1405–1417. MR 2592579, 10.1016/j.apm.2009.08.027
Reference: [2] Berezansky, L., Braverman, E., Idels, L.: Mackey-Glass model of hematopoiesis with monotone feedback revisited.Appl. Math. Comput. 219 (9) (2013), 4892–4907. MR 3001538, 10.1016/j.amc.2012.10.052
Reference: [3] Diekmann, O., van Gils, S., Verdyn Lunel, S., Walther, H.-O.: Delay Equations: Complex, Functional, and Nonlinear Analysis.Springer-Verlag, New York, 1995.
Reference: [4] Erneux, T.: Applied delay differential equations.Surveys and Tutorials in the Applied Mathematical Sciences, vol. 3, Springer Verlag, 2009. MR 2498700
Reference: [5] Györy, I., Ladas, G.: Oscillation Theory of Delay Differential Equations.Oxford Science Publications, Clarendon Press, Oxford, 1991, 368 pp.
Reference: [6] Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations.Applied Mathematical Sciences, Springer-Verlag, New York, 1993. Zbl 0787.34002
Reference: [7] Ivanov, A.F., Sharkovsky, A.N.: Oscillations in singularly perturbed delay equations.Dynamics Reported (New Series) 1 (1991), 165–224.
Reference: [8] Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics.Mathematics in Science and Engineering, vol. 191, Academic Press Inc., 1993, p. 398. Zbl 0777.34002
Reference: [9] Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems.Science 197 (1977), 287–289. 10.1126/science.267326
Reference: [10] Smith, H.: An Introduction to Delay Differential Equations with Applications to the Life Sciences.Texts in Applied Mathematics, vol. 57, Springer-Verlag, 2011. Zbl 1227.34001, MR 2724792
Reference: [11] Walther, H.-O.: Homoclinic solution and chaos in $\dot{x}(t)=f(x(t-1))$.Nonlinear Anal. 5 (7) (1981), 775–788. 10.1016/0362-546X(81)90052-3
Reference: [12] Wazewska-Czyzewska, M., Lasota, A.: Mathematical models of the red cell system.Matematyka Stosowana 6 (1976), 25–40, in Polish.
.

Files

Files Size Format View
ArchMathRetro_059-2023-1_8.pdf 646.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo