[1] Bradley, S. P., Hax, A. C., Magnanti, T. L.:
Applied Mathematical Programming. Addison-Wesley Publishing Company, 1977.
MR 0135622
[2] Curry, S., Lee, I., Ma, S., Serban, N.:
Global sensitivity analysis via a statistical tolerance approach. Europ. J. Oper. Res. 296 (2022), 1, 44-59.
DOI |
MR 4304220
[3] Dantzig, G.:
Linear programming and extensions. In: Linear programming and extensions. Princeton Zniversity Press, 2016.
MR 0201189
[4] Filippi, C.:
A fresh view on the tolerance approach to sensitivity analysis in linear programming. Europ. J. Oper. Res. 16 (2005), 1, 1-19.
DOI |
MR 2148687
[5] Gao, Z., Inuiguchi, M.: Estimating the optimal probability of a candidate basic solution in stochastic linear programming. In: 60th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), IEEE 2021, pp. 640-643.
[6] Gao, Z., Inuiguchi, M.:
An analysis to treat the degeneracy of a basic feasible solution in interval linear programming. In: The Ninth International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making (IUKM 2022). Publ. in Lecture Notes in Computer Science pp. 130-142, 2022.
DOI
[7] Garajová, E., Hladík, M.:
On the optimal solution set in interval linear programming. Comput. Optim. Appl. 72 (2019), 1, 269-292.
DOI |
MR 3904501
[8] al., T. L. Heath et:
The works of Archimedes. Courier Corporation, 2002.
MR 2000800
[9] Henk, M., Richter-Gebert, J., Goodman, G. M. Ziegler.:
Basic properties of convex polytopes. In J. O'Rourke, J. editors Discrete, Handbook of Geometry, Computational Edition, 2nd 243-270, pages Raton, Boca FL Press., 2004. CRC
MR 1730169
[10] Hladík, M.:
Multiparametric linear programming: support set and optimal partition invariancy. Europ. J. Oper. Res. 202 (2010), 1, 25-31, 2010.
DOI |
MR 2556420
[11] Hladík, M.:
Complexity of necessary efficiency in interval linear programming and multiobjective linear programming. Optim. Lett. 6 (2012), 5, 893-899.
DOI |
MR 2925625
[12] Horst, R., Vries, J. De, Thoai, N. V.:
On finding new vertices and redundant constraints in cutting plane algorithms for global optimization. Oper. Res. Lett. 7 (1988), 2, 85-90.
DOI |
MR 0942873
[13] Horst, R., Tuy, H.:
Global optimization: Deterministic approaches. Springer Science and Business Media, 2013.
MR 1102239
[14] Inuiguchi, M.:
Necessary efficiency is partitioned into possible and necessary optimalities. In: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), IEEE 2013, pp. 209-214.
DOI
[15] Inuiguchi, M., Gao, Z., Henriques, C. O.:
Robust optimality analysis of non-degenerate basic feasible solutions in linear programming problems with fuzzy objective coefficients. Fuzzy Optimization and Decision Making 22 (2023), 51-79.
DOI |
MR 4547385
[16] Inuiguchi, M., Ramík, J.:
Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets Systems 111 (2000), 1, 3-28.
DOI |
MR 1748690
[17] Inuiguchi, M., Sakawa, M.:
Possible and necessary efficiency in possibilistic multiobjective linear programming problems and possible efficiency test. Fuzzy Sets Systems 78 (1996), 2, 231-241.
DOI |
MR 1379388
[18] Inuiguchi, M., Sakawa, M.:
An achievement rate approach to linear programming problems with an interval objective function. J. Oper. Res. Soc. 48 (1997), 1, 25-33.
DOI
[19] Inuiguchi, M., Sakawa, M.:
Robust optimization under softness in a fuzzy linear programming problem. Int. J. Approx. Reas. 18 (1998), 1-2, 21-34.
DOI |
MR 1657469
[20] Jansen, B., Jong, J. De, Roos, C., Terlaky, T.:
Sensitivity analysis in linear programming: just be careful!. Europ. J. Oper. Res. 101 (1997), 1, 15-28.
DOI
[21] Kall, P., Mayer, J.:
Stochastic Linear Programming: Models, Theory, and Computation. Second Edition. Springer, Boston 2011.
MR 2744572
[22] Todd, M. J.:
Probabilistic models for linear programming. Math. Oper. Res. 16 (1991), 4, 671-693.
DOI |
MR 1135045
[23] Wendell, R. E.:
The tolerance approach to sensitivity analysis in linear programming. Management Sci. 31 (1985), 5, 564-578.
DOI |
MR 0790107
[24] Wendell, R. E.:
Tolerance sensitivity and optimality bounds in linear programming. Management Sci. 50 (2004), 6, 797-803.
DOI
[25] Jr., F. R. Wondolowski:
A generalization of wendell's tolerance approach to sensitivity analysis in linear programming. Decision Sci. 22 (1991), 4, 792-811.
DOI