[4] Candido, L.: 
On the distortion of a linear embedding of $C(K)$ into a $C_0(\Gamma,X)$ space. J. Math. Anal. Appl. 459 (2018), 1201-1207 \99999DOI99999 10.1016/j.jmaa.2017.11.039 	. 
MR 3732581 | 
Zbl 1383.46020[5] Candido, L., Galego, E. M.: 
How far is $C_0(\Gamma, X)$ with $\Gamma$ discrete from $C_0(K,X)$ spaces?. Fundam. Math. 218 (2012), 151-163 \99999DOI99999 10.4064/fm218-2-3 	. 
MR 2957688 | 
Zbl 1258.46002[6] Candido, 	L., Galego, E. M.: 
Embeddings of $C(K)$ spaces into $C(S,X)$ spaces with distortion strictly less than 3. Fundam. Math. 220 (2013), 83-92 \99999DOI99999 10.4064/fm220-1-5 	. 
MR 3011771 | 
Zbl 1271.46005[7] Candido, L., Galego, E. M.: 
How does the distortion of linear embedding of $C_0(K)$ into $C_0(\Gamma,X)$ spaces depend on the height of $K$?. J. Math. Anal. Appl. 402 (2013), 185-190 \99999DOI99999 10.1016/j.jmaa.2013.01.017 	. 
MR 3023248 | 
Zbl 1271.46006[8] Candido, L., Galego, E. M.: 
How far is $C(\omega)$ from the other $C(K)$ spaces?. Stud. Math. 217 (2013), 123-138 \99999DOI99999 10.4064/sm217-2-2 	. 
MR 3117334 | 
Zbl 1288.46013[9] Cengiz, B.: 
On topological isomorphisms of $C_{0}(X)$ and the cardinal number of $X$. Proc. Am. Math. Soc. 72 (1978), 105-108 \99999DOI99999 10.1090/S0002-9939-1978-0493291-0 	. 
MR 0493291 | 
Zbl 0397.46022[10] Cerpa-Torres, M. F., Rincón-Villamizar, M. A.: 
Isomorphisms from extremely regular subspaces of $C_0(K)$ into $C_0(S,X)$ spaces. Int. J. Math. Math. Sci. 2019 (2019), Article ID 7146073, 7 pages \99999DOI99999 10.1155/2019/7146073 	. 
MR 4047607 | 
Zbl 1487.46025[11] Chu, C.-H., Cohen, H. B.: 
Small-bound isomorphisms of function spaces. Function spaces Lecture Notes in Pure and Applied Mathematics 172. Marcel Dekker, New York (1995), 51-57 \99999MR99999 1352220 	. 
MR 1352220 | 
Zbl 0888.46029[12] Cohen, H. B.: 
A bound-two isomorphism between $C(X)$ Banach spaces. Proc. Am. Math. Soc. 50 (1975), 215-217 \99999DOI99999 10.1090/S0002-9939-1975-0380379-5 	. 
MR 0380379 | 
Zbl 0317.46025[13] Dostál, P., Spurný, J.: 
The minimum principle for affine functions and isomorphisms of continuous affine function spaces. Arch.	Math. 114 (2020), 61-70 \99999DOI99999 10.1007/s00013-019-01371-0 	. 
MR 4049228 | 
Zbl 1440.46003[14] Fleming, R. J., Jamison, J. E.: 
Isometries on Banach Spaces: Function Spaces. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics 129. Chapman & Hall/CRC, Boca Raton (2003),\99999DOI99999 10.1201/9781420026153 	. 
MR 1957004 | 
Zbl 1011.46001[15] Galego, E. M., Rincón-Villamizar, M. A.: 
Weak forms of Banach-Stone theorem for $C_0(K,X)$ spaces via the $\alpha$th derivatives of $K$. Bull. Sci. Math. 139 (2015), 880-891 \99999DOI99999 10.1016/j.bulsci.2015.04.002 	. 
MR 3429497 | 
Zbl 1335.46005[16] Gordon, Y.: 
On the distance coefficient between isomorphic function spaces. Isr. J. Math. 8 (1970), 391-397 \99999DOI99999 10.1007/BF02798685 	. 
MR 0270128 | 
Zbl 0205.12401[17] Hess, H. U.: 
On a theorem of Cambern. Proc. Am. Math. Soc. 71 (1978), 204-206 \99999DOI99999 10.1090/S0002-9939-1978-0500490-8 	. 
MR 0500490 | 
Zbl 0394.46010[18] Ludvík, P., Spurný, J.: 
Isomorphisms of spaces of continuous affine functions on compact convex sets with Lindelöf boundaries. Proc. Am. Math. Soc. 139 (2011), 1099-1104 \99999DOI99999 10.1090/S0002-9939-2010-10534-8 	. 
MR 2745661 | 
Zbl 1225.46005[19] Lukeš, 	J., Malý, J., Netuka, I., Spurný, J.: 
Integral Representation Theory: Applications to Convexity, Banach Spaces and Potential Theory. de Gruyter Studies in Mathematics 35. Walter de Gruyter, Berlin (2010),\99999DOI99999 10.1515/9783110203219 	. 
MR 2589994 | 
Zbl 1216.46003[20] Morrison, T. J.: 
Functional Analysis: An Introduction to	Banach Space Theory. Pure and Applied Mathematics. A Wiley Series of	Texts, Monographs and Tracts. Wiley, Chichester (2001),\99999MR99999 1885114 	. 
MR 1885114 | 
Zbl 1005.46004[21] Rondoš, J., Spurný, J.: 
Isomorphisms of subspaces of	vector-valued continuous functions. Acta Math. Hung. 164 (2021), 200-231 \99999DOI99999 10.1007/s10474-020-01107-5 	. 
MR 4264226 | 
Zbl 1488.46072[22] Rondoš, 	J., Spurný, J.: 
Small-bound isomorphisms of function spaces. J. Aust. Math. Soc. 111 (2021), 412-429 \99999DOI99999 10.1017/S1446788720000129 	. 
MR 4337946 | 
Zbl 1493.46016[23] Semadeni, 	Z.: 
Banach Spaces of Continuous Functions. Vol. 1. Monografie matematyczne 55. PWN -	Polish Scientific Publishers, Warszawa (1971). 
MR 0296671 | 
Zbl 0225.46030