Previous |  Up |  Next

Article

Title: On the divisor function over Piatetski-Shapiro sequences (English)
Author: Wang, Hui
Author: Zhang, Yu
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 2
Year: 2023
Pages: 613-620
Summary lang: English
.
Category: math
.
Summary: Let $[x]$ be an integer part of $x$ and $d(n)$ be the number of positive divisor of $n$. Inspired by some results of M. Jutila (1987), we prove that for $1<c<\frac 65$, $$ \sum _{n\leq x} d([n^c])= cx\log x +(2\gamma -c)x+O\Bigl (\frac {x}{\log x}\Bigr ), $$ where $\gamma $ is the Euler constant and $[n^c]$ is the Piatetski-Shapiro sequence. This gives an improvement upon the classical result of this problem. (English)
Keyword: divisor function
Keyword: Piatetski-Shapiro sequence
Keyword: exponential sum
MSC: 11B83
MSC: 11L07
MSC: 11N25
MSC: 11N37
idZBL: Zbl 07729527
idMR: MR4586914
DOI: 10.21136/CMJ.2023.0205-22
.
Date available: 2023-05-04T17:51:44Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151677
.
Reference: [1] Arkhipov, G. I., Chubarikov, V. N.: On the distribution of prime numbers in a sequence of the form $[n^c]$.Mosc. Univ. Math. Bull. 54 (1999), 25-35 translation from Vestn. Mosk. Univ., Ser. I 1999 1999 25-35. Zbl 0983.11055, MR 1735145
Reference: [2] Arkhipov, G. I., Soliba, K. M., Chubarikov, V. N.: On the sum of values of a multidimensional divisor function on a sequence of type $[n^c]$.Mosc. Univ. Math. Bull. 54 (1999), 28-36 translation from Vestn. Mosk. Univ., Ser. I 1999 1999 28-35. Zbl 0957.11040, MR 1706007
Reference: [3] Graham, S. W., Kolesnik, G.: Van der Corput's Method of Exponential Sums.London Mathematical Society Lecture Note Series 126. Cambridge University Press, Cambridge (1991). Zbl 0713.11001, MR 1145488, 10.1017/CBO9780511661976
Reference: [4] Heath-Brown, D. R.: The Pjateckii-Šapiro prime number theorem.J. Number Theory 16 (1983), 242-266. Zbl 0513.10042, MR 0698168, 10.1016/0022-314X(83)90044-6
Reference: [5] Jutila, M.: Lectures on a Method in the Theory of Exponential Sums.Tata Institute Lectures on Mathematics and Physics 80. Springer, Berlin (1987). Zbl 0671.10031, MR 0910497
Reference: [6] Kolesnik, G. A.: An improvement of the remainder term in the divisor problem.Math. Notes 6 (1969), 784-791 translation from Mat. Zametki 6 1969 545-554. Zbl 0233.10031, MR 0257004, 10.1007/BF01101405
Reference: [7] Kolesnik, G. A.: Primes of the form $[n^c]$.Pac. J. Math. 118 (1985), 437-447. Zbl 0571.10037, MR 0789183, 10.2140/PJM.1985.118.437
Reference: [8] Liu, H. Q., Rivat, J.: On the Pjateckii-Šapiro prime number theorem.Bull. Lond. Math. Soc. 24 (1992), 143-147. Zbl 0772.11032, MR 1148674, 10.1112/BLMS/24.2.143
Reference: [9] Lü, G. S., Zhai, W. G.: The sum of multidimensional divisor functions on a special sequence.Adv. Math., Beijing 32 (2003), 660-664 Chinese. Zbl 1481.11090, MR 2058014
Reference: [10] Piatetski-Shapiro, I. I.: On the distribution of the prime numbers in sequences of the form $[f(n)]$.Mat. Sb., N. Ser. 33 (1953), 559-566 Russian. Zbl 0053.02702, MR 0059302
Reference: [11] Rivat, J., Sargos, P.: Nombres premiers de la forme $[n^c]$.Can. J. Math. 53 (2001), 414-433 French. Zbl 0970.11035, MR 1820915, 10.4153/CJM-2001-017-0
Reference: [12] Rivat, J., Wu, J.: Prime numbers of the form $[n^c]$.Glasg. Math. J. 43 (2001), 237-254. Zbl 0987.11052, MR 1838628, 10.1017/S0017089501020080
Reference: [13] Vaaler, J. D.: Some extremal functions in Fourier analysis.Bull. Am. Math. Soc., New Ser. 12 (1985), 183-216. Zbl 0575.42003, MR 0776471, 10.1090/S0273-0979-1985-15349-2
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo