Previous |  Up |  Next

Article

Title: Remarks on the balanced metric on Hartogs triangles with integral exponent (English)
Author: Zhang, Qiannan
Author: Yang, Huan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 2
Year: 2023
Pages: 633-647
Summary lang: English
.
Category: math
.
Summary: In this paper we study the balanced metrics on some Hartogs triangles of exponent $\gamma \in \mathbb {Z}^{+}$, i.e., $$ \Omega _n(\gamma )= \{z=(z_1,\dots ,z_n)\in \mathbb {C}^n\colon |z_1|^{1/\gamma }<|z_2|<\dots <|z_n|<1 \} $$ equipped with a natural Kähler form $\omega _{g(\mu )} := \frac 12(i /\pi )\partial \overline {\partial }\Phi _n$ with $$ \Phi _n(z)=-\mu _1{\ln (|z_2|^{2\gamma }- |z_1 |^2)}-\sum _{i=2}^{n-1} {\mu _i{\ln (|z_{i+1}|^2-|z_i|^2)}}-\mu _n{\ln (1-{|z_n|^2})}, $$ where $\mu =(\mu _1,\cdots ,\mu _n)$, $\mu _i>0$, depending on $n$ parameters. The purpose of this paper is threefold. First, we compute the explicit expression for the weighted Bergman kernel function for $(\Omega _n(\gamma ),g(\mu ))$ and we prove that $g(\mu )$ is balanced if and only if $\mu _1>1$ and $\gamma \mu _1$ is an integer, $\mu _i$ are integers such that $\mu _i\geq 2$ for all $i=2,\ldots ,n-1$, and $\mu _n>1$. Second, we prove that $g(\mu )$ is Kähler-Einstein if and only if $\mu _1=\mu _2=\cdots =\mu _n=2\lambda $, where $\lambda $ is a nonzero constant. Finally, we show that if $g(\mu )$ is balanced then $(\Omega _n(\gamma ),g(\mu ))$ admits a Berezin-Engliš quantization. (English)
Keyword: balanced metric
Keyword: Kähler-Einstein metric
Keyword: Berezin-Engliš quantization
MSC: 32A25
MSC: 32Q15
MSC: 53C55
idZBL: Zbl 07729529
idMR: MR4586916
DOI: 10.21136/CMJ.2023.0208-22
.
Date available: 2023-05-04T17:52:50Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151679
.
Reference: [1] Arezzo, C., Loi, A.: Moment maps, scalar curvature and quantization of Kähler manifolds.Commun. Math. Phys. 246 (2004), 543-559. Zbl 1062.32021, MR 2053943, 10.1007/s00220-004-1053-3
Reference: [2] Bi, E., Feng, Z., Tu, Z.: Balanced metrics on the Fock-Bargmann-Hartogs domains.Ann. Global Anal. Geom. 49 (2016), 349-359. Zbl 1355.32004, MR 3510521, 10.1007/s10455-016-9495-3
Reference: [3] Bi, E., Hou, Z.: Canonical metrics on generalized Hartogs triangles.C. R., Math., Acad. Sci. Paris 360 (2022), 305-313. Zbl 07514676, MR 4415724, 10.5802/crmath.283
Reference: [4] Bi, E., Su, G.: Balanced metrics and Berezin quantization on Hartogs triangles.Ann. Mat. Pura Appl. (4) 200 (2021), 273-285. Zbl 1462.32008, MR 4208091, 10.1007/s10231-020-00995-2
Reference: [5] Bommier-Hato, H., Engliš, M., Youssfi, E.-H.: Radial balanced metrics on the unit ball of the Kepler manifold.J. Math. Anal. Appl. 475 (2019), 736-754. Zbl 1420.32019, MR 3944344, 10.1016/j.jmaa.2019.02.067
Reference: [6] Catlin, D.: The Bergman kernel and a theorem of Tian.Analysis and Geometry in Several Complex Variables Trends in Mathematics. Birkhäuser, Boston (1999), 1-23. Zbl 0941.32002, MR 1699887, 10.1007/978-1-4612-2166-1_1
Reference: [7] Cheng, S.-Y., Yau, S.-T.: On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Fefferman's equation.Commun. Pure Appl. Math. 33 (1980), 507-544. Zbl 0506.53031, MR 575736, 10.1002/cpa.3160330404
Reference: [8] D'Angelo, J. P.: An explicit computation of the Bergman kernel function.J. Geom. Anal. 4 (1994), 23-34. Zbl 0794.32021, MR 1274136, 10.1007/BF02921591
Reference: [9] Donaldson, S. K.: Scalar curvature and projective embeddings. I.J. Differ. Geom. 59 (2001), 479-522. Zbl 1052.32017, MR 1916953, 0.4310/jdg/1090349449
Reference: [10] Engliš, M.: Berezin quantization and reproducing kernels on complex domains.Trans. Am. Math. Soc. 348 (1996), 411-479. Zbl 0842.46053, MR 1340173, 10.1090/S0002-9947-96-01551-6
Reference: [11] Engliš, M.: The asymptotics of a Laplace integral on a Kähler manifold.J. Reine Angew. Math. 528 (2000), 1-39. Zbl 0965.32012, MR 1801656, 10.1515/crll.2000.090
Reference: [12] Engliš, M.: Weighted Bergman kernels and balanced metrics.RIMS Kokyuroku 1487 (2006), 40-54. MR 2156503
Reference: [13] Feng, Z., Tu, Z.: Balanced metrics on some Hartogs type domains over bounded symmetric domains.Ann. Global Anal. Geom. 47 (2015), 305-333. Zbl 1322.32003, MR 3331892, 10.1007/s10455-014-9447-8
Reference: [14] Hou, Z., Bi, E.: Remarks on regular quantization and holomorphic isometric immersions on Hartogs triangles.Arch. Math. 118 (2022), 605-614. Zbl 07530384, MR 4423454, 10.1007/s00013-022-01718-0
Reference: [15] Loi, A., Zedda, M.: Balanced metrics on Hartogs domains.Abh. Math. Semin. Univ. Hamb. 81 (2011), 69-77. Zbl 1228.53084, MR 2812034, 10.1007/s12188-011-0048-1
Reference: [16] Loi, A., Zedda, M.: Balanced metrics on Cartan and Cartan-Hartogs domains.Math. Z. 270 (2012), 1077-1087. Zbl 1239.53093, MR 2892939, 10.1007/s00209-011-0842-6
Reference: [17] Ma, X., Marinescu, G.: Generalized Bergman kernels on symplectic manifolds.Adv. Math. 217 (2008), 1756-1815. Zbl 1141.58018, MR 2382740, 10.1016/j.aim.2007.10.008
Reference: [18] Ma, X., Marinescu, G.: Berezin-Toeplitz quantization on Kähler manifolds.J. Reine Angew. Math. 662 (2012), 1-56. Zbl 1251.47030, MR 2876259, 10.1515/CRELLE.2011.133
Reference: [19] Yang, H., Bi, E.: Remarks on Rawnsley's $\epsilon$-function on the Fock-Bargmann-Hartogs domains.Arch. Math. 112 (2019), 417-427. Zbl 1423.32001, MR 3928367, 10.1007/s00013-018-1260-3
Reference: [20] Zedda, M.: Canonical metrics on Cartan-Hartogs domains.Int. J. Geom. Methods Mod. Phys. 9 (2012), Article ID 1250011, 13 pages. Zbl 1260.53126, MR 2891525, 10.1142/S0219887812500119
Reference: [21] Zedda, M.: Berezin-Engliš' quantization of Cartan-Hartogs domains.J. Geom. Phys. 100 (2016), 62-67. Zbl 1330.53104, MR 3435762, 10.1016/j.geomphys.2015.11.002
Reference: [22] Zelditch, S.: Szegö kernels and a theorem of Tian.Int. Math. Res. Not. 1998 (1998), 317-331. Zbl 0922.58082, MR 1616718, 10.1155/S107379289800021X
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo