[2] Bailová, M., Bouchala, J.:
A mountain pass algorithm for quasilinear boundary value problem with $p$-Laplacian. Math. Comput. Simul. 189 (2021), 291-304 \99999DOI99999 10.1016/j.matcom.2021.03.006 .
MR 4297869 |
Zbl 07431491
[3] Barutello, V., Terracini, S.:
A bisection algorithm for the numerical mountain pass. NoDEA, Nonlinear Differ. Equ. Appl. 14 (2007), 527-539 \99999DOI99999 10.1007/s00030-007-4065-9 .
MR 2374198 |
Zbl 1141.46036
[4] Bouchala, J., Drábek, P.:
Strong resonance for some quasilinear elliptic equations. J. Math. Anal. Appl. 245 (2000), 7-19 \99999DOI99999 10.1006/jmaa.2000.6713 .
MR 1756573 |
Zbl 0970.35062
[5] Chen, G., Zhou, J., Ni, W.-M.:
Algorithms and visualization for solutions of nonlinear elliptic equations. Int. J. Bifurcation Chaos Appl. Sci. Eng. 10 (2000), 1565-1612 \99999DOI99999 10.1142/S0218127400001006 .
MR 1780923 |
Zbl 1090.65549
[6] Choi, Y. S., McKenna, P. J.:
A mountain pass method for the numerical solution of semilinear elliptic problems. Nonlinear Anal., Theory Methods Appl. 20 (1993), 417-437 \99999DOI99999 10.1016/0362-546X(93)90147-K .
MR 1206432 |
Zbl 0779.35032
[7] Ding, Z., Costa, D., Chen, G.:
A high-linking algorithm for sign-changing solutions of semilinear elliptic equations. Nonlinear Anal., Theory Methods Appl. 38 (1999), 151-172 \99999DOI99999 10.1016/S0362-546X(98)00086-8 .
MR 1697049 |
Zbl 0941.35023
[8] Drábek, P., Kufner, A., Nicolosi, F.:
Quasilinear Elliptic Equations with Degenerations and Singularities. de Gruyter Series in Nonlinear Analysis and Applications 5. Walter de Gruyter, Berlin (1997),\99999DOI99999 10.1515/9783110804775 .
MR 1460729 |
Zbl 0894.35002
[9] Horák, J.:
Constrained mountain pass algorithm for the numerical solution of semilinear elliptic problems. Numer. Math. 98 (2004), 251-276 \99999DOI99999 10.1007/s00211-004-0544-7 .
MR 2092742 |
Zbl 1058.65129
[10] Horák, J., Holubová, G., (eds.), P. Nečesal: Proceedings of Seminar in Differential Equations: Deštné v Orlických horách, May 21-25, 2012. Volume I. Mountain Pass and Its Applications in Analysis and Numerics. University of West Bohemia, Pilsen (2012) .
[12] Kippenhahn, R., Weigert, A., Weiss, A.:
Stellar Structure and Evolution. Astronomy and Astrophysics Library. Springer, Berlin (2012).
DOI 10.1007/978-3-642-30304-3
[13] Li, Y., Zhou, J.:
A minimax method for finding multiple critical points and its applications to semilinear PDEs. SIAM J. Sci. Comput. 23 (2001), 840-865 \99999DOI99999 10.1137/S1064827599365641 .
MR 1860967 |
Zbl 1002.35004
[14] Shen, Q.:
A meshless scaling iterative algorithm based on compactly supported radial basis functions for the numerical solution of Lane-Emden-Fowler equation. Numer. Methods Partial Differ. Equations 28 (2012), 554-572 \99999DOI99999 10.1002/num.20635 .
MR 2879794 |
Zbl 1457.65232
[15] Struwe, M.:
Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge 34. Springer, Berlin (2000),\99999DOI99999 10.1007/978-3-662-04194-9 .
MR 1736116 |
Zbl 0939.49001
[16] Tacheny, N., Troestler, C.:
A mountain pass algorithm with projector. J. Comput. Appl. Math. 236 (2012), 2025-2036 \99999DOI99999 10.1016/j.cam.2011.11.011 .
MR 2863532 |
Zbl 1245.65075
[17] Willem, M.:
Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications 24. Birkhäuser, Boston (1996),\99999DOI99999 10.1007/978-1-4612-4146-1 .
MR 1400007 |
Zbl 0856.49001