Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
quaternionic polynomial; Eneström-Kakeya theorem; zero-sets of a regular product
Summary:
We present some results on the location of zeros of regular polynomials of a quaternionic variable. We derive new bounds of Eneström-Kakeya type for the zeros of these polynomials by virtue of a maximum modulus theorem and the structure of the zero sets of a regular product established in the newly developed theory of regular functions and polynomials of a quaternionic variable. Our results extend some classical results from complex to the quaternionic setting as well.
References:
[1] Carney, N., Gardner, R., Keaton, R., Powers, A.: The Eneström-Kakeya theorem for polynomials of a quaternionic variable. J. Approx. Theory 250 (2020), Article ID 105325, 10 pages. DOI 10.1016/j.jat.2019.105325 | MR 4035962 | Zbl 1441.30070
[2] Coroianu, L., Gal, S. G.: On the inequalities of Turán, Bernstein and Erdős-Lax in quaternionic setting. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115 (2021), Article ID 187, 20 pages. DOI 10.1007/s13398-021-01126-z | MR 4311697 | Zbl 1476.30158
[3] Cullen, C. G.: An integral theorem for analytic intrinsic functions on quaternions. Duke Math. J. 32 (1965), 139-148. DOI 10.1215/S0012-7094-65-03212-6 | MR 0173012 | Zbl 0173.09001
[4] Gal, S. G., Sabadini, I.: On Bernstein and Erdős-Lax's inequalities for quaternionic polynomials. C. R., Math., Acad. Sci. Paris 353 (2015), 5-9. DOI 10.1016/j.crma.2014.10.011 | MR 3285138 | Zbl 1306.30020
[5] Gentili, G., Stoppato, C.: Zeros of regular functions and polynomials of a quaternionic variable. Mich. Math. J. 56 (2008), 655-667. DOI 10.1307/mmj/1231770366 | MR 2490652 | Zbl 1184.30048
[6] Gentili, G., Struppa, D. C.: A new theory of regular functions of a quaternionic variable. Adv. Math. 216 (2007), 279-301. DOI 10.1016/j.aim.2007.05.010 | MR 2353257 | Zbl 1124.30015
[7] Gentili, G., Struppa, D. C.: On the multiplicity of zeroes of polynomials with quaternionic coefficients. Milan J. Math. 76 (2008), 15-25. DOI 10.1007/s00032-008-0093-0 | MR 2465984 | Zbl 1194.30054
[8] Gentili, G., Struppa, D. C., Vlacci, F.: The fundamental theorem of algebra for Hamilton and Cayley numbers. Math. Z. 259 (2008), 895-902. DOI 10.1007/s00209-007-0254-9 | MR 2403747 | Zbl 1144.30004
[9] Govil, N. K., Rahman, Q. I.: On the Eneström-Kakeya theorem. Tohoku Math. J., II. Ser. 20 (1968), 126-136. DOI 10.2748/tmj/1178243172 | MR 0231979 | Zbl 0194.10201
[10] Joyal, A., Labelle, G., Rahman, Q. I.: On the location of zeros of polynomials. Can. Math. Bull. 10 (1967), 53-63. DOI 10.4153/CMB-1967-006-3 | MR 0213513 | Zbl 0152.06102
[11] Lam, T. Y.: A First Course in Noncommutative Rings. Graduate Texts in Mathematics 131. Springer, New York (1991). DOI 10.1007/978-1-4684-0406-7 | MR 1125071 | Zbl 0728.16001
[12] Marden, M.: Geometry of Polynomials. Mathematical Surveys 3. AMS, Providence (1966). MR 0225972 | Zbl 0162.37101
[13] Milovanović, G. V., Mitrinović, D. S., Rassias, T. M.: Topics in Polynomials: Extremal Problems, Inequalities, Zeros. World Scientific, Singapore (1994). DOI 10.1142/1284 | MR 1298187 | Zbl 0848.26001
[14] Niven, I.: Equations in quaternions. Am. Math. Mon. 48 (1941), 654-661. DOI 10.1080/00029890.1941.11991158 | MR 0006159 | Zbl 0060.08002
[15] Niven, I.: The roots of a quaternion. Am. Math. Mon. 49 (1942), 386-388. DOI 10.1080/00029890.1942.11991248 | MR 0006980 | Zbl 0061.01407
[16] Serôdio, R., Siu, L.-S.: Zeros of quaternion polynomials. Appl. Math. Lett. 14 (2001), 237-239. DOI 10.1016/S0893-9659(00)00142-7 | MR 1808271 | Zbl 0979.30030
[17] Sudbery, A.: Quaternionic analysis. Math. Proc. Camb. Philos. Soc. 85 (1979), 199-225. DOI 10.1017/S0305004100055638 | MR 0516081 | Zbl 0399.30038
[18] Tripathi, D.: A note on Eneström-Kakeya theorem for a polynomial with quaternionic variable. Arab. J. Math. 9 (2020), 707-714. DOI 10.1007/s40065-020-00283-0 | MR 4159749 | Zbl 1452.30027
Partner of
EuDML logo