Previous |  Up |  Next

Article

Title: On the average behavior of the Fourier coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers (English)
Author: Sharma, Anubhav
Author: Sankaranarayanan, Ayyadurai
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 3
Year: 2023
Pages: 885-901
Summary lang: English
.
Category: math
.
Summary: We investigate the average behavior of the $n$th normalized Fourier coefficients of the $j$th ($j \geq 2$ be any fixed integer) symmetric power $L$-function (i.e., $L(s,{\rm sym}^{j}f)$), attached to a primitive holomorphic cusp form $f$ of weight $k$ for the full modular group $SL(2,\mathbb {Z})$ over certain sequences of positive integers. Precisely, we prove an asymptotic formula with an error term for the sum $$ S_j^*:= \sum_{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}\leq x (a_{1},a_{2},a_{3},a_{4},a_{5},a_{6})\in \mathbb {Z}^{6}} \lambda ^{2}_{{\rm sym}^{j}f}(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}), $$ where $x$ is sufficiently large, and $$ L(s,\mathrm{sym}^{j}f):=\sum _{n=1}^{\infty }\frac {\lambda_{\mathrm{sym}^{j}f}(n)}{n^{s}}. $$ When $j=2$, the error term which we obtain improves the earlier known result. (English)
Keyword: nonprincipal Dirichlet character
Keyword: Hölder's inequality
Keyword: $j$th symmetric power $L$-function
Keyword: holomorphic cusp form
MSC: 11F11
MSC: 11F30
MSC: 11M06
idZBL: Zbl 07729543
idMR: MR4632863
DOI: 10.21136/CMJ.2023.0348-22
.
Date available: 2023-08-11T14:27:29Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151780
.
Reference: [1] Bourgain, J.: Decoupling, exponential sums and the Riemann zeta function.J. Am. Math. Soc. 30 (2017), 205-224. Zbl 1352.11065, MR 3556291, 10.1090/jams/860
Reference: [2] Deligne, P.: La conjecture de Weil. I.Publ. Math., Inst. Hautes Étud. Sci. 43 (1974), 273-307 French. Zbl 0287.14001, MR 0340258, 10.1007/BF02684373
Reference: [3] Fomenko, O. M.: Identities involving coefficients of automorphic $L$-functions.J. Math. Sci., New York 133 (2006), 1749-1755. Zbl 1094.11018, MR 2119744, 10.1007/s10958-006-0086-x
Reference: [4] Good, A.: The square mean of Dirichlet series associated with cusp forms.Mathematika 29 (1982), 278-295. Zbl 0497.10016, MR 0696884, 10.1112/S0025579300012377
Reference: [5] Granville, A., Soundararajan, K.: Multiplicative number theory: The pretentious approach.Available at https://dms.umontreal.ca/ {andrew/PDF/BookChaps1n2.pdf}.
Reference: [6] He, X.: Integral power sums of Fourier coefficients of symmetric square $L$-functions.Proc. Am. Math. Soc. 147 (2019), 2847-2856. Zbl 1431.11062, MR 3973888, 10.1090/proc/14516
Reference: [7] Heath-Brown, D. R.: The twelfth power moment of the Riemann-function.Q. J. Math., Oxf. II. Ser. 29 (1978), 443-462. Zbl 0394.10020, MR 0517737, 10.1093/qmath/29.4.443
Reference: [8] Ivić, A.: Exponent pairs and the zeta-function of Riemann.Stud. Sci. Math. Hung. 15 (1980), 157-181. Zbl 0455.10025, MR 0681438
Reference: [9] Jiang, Y., Lü, G.: On the higher mean over arithmetic progressions of Fourier coefficients of cusp forms.Acta Arith. 3 (2014), 231-252. Zbl 1323.11023, MR 3283621, 10.4064/aa166-3-2
Reference: [10] Jutila, M.: Lectures on a Method in the Theory of Exponential Sums.Lectures on Mathematics and Physics. Mathematics. Tata Institute of Fundamental Research 80. Springer, Berlin (1987). Zbl 0671.10031, MR 0910497
Reference: [11] Krätzel, E.: Analytische Funktionen in der Zahlentheorie.Teubner-Texte zur Mathematik 139. B. G. Teubner, Stuttgart (2000). Zbl 0962.11001, MR 1889901, 10.1007/978-3-322-80021-3
Reference: [12] Lao, H.: On the fourth moment of coefficients of symmetric square $L$-function.Chin. Ann. Math., Ser. B 33 (2012), 877-888. Zbl 1279.11052, MR 2996556, 10.1007/s11401-012-0746-8
Reference: [13] Lau, Y.-K., Lü, G.: Sums of Fourier coefficients of cusp forms.Q. J. Math. 62 (2011), 687-716. Zbl 1269.11044, MR 2825478, 10.1093/qmath/haq012
Reference: [14] Loh, W. K. A.: Limitation to the asymptotic formula in Waring's problem.Acta Arith. 74 (1996), 1-15. Zbl 0847.11050, MR 1367574, 10.4064/aa-74-1-1-15
Reference: [15] Newton, J., Thorne, J. A.: Symmetric power functoriality for holomorphic modular forms.Publ. Math., Inst. Hautes Étud. Sci. 134 (2021), 1-116. Zbl 07458825, MR 4349240, 10.1007/s10240-021-00127-3
Reference: [16] Newton, J., Thorne, J. A.: Symmetric power functoriality for holomorphic modular forms. II.Publ. Math., Inst. Hautes Étud. Sci. 134 (2021), 117-152. Zbl 07458826, MR 4349241, 10.1007/s10240-021-00126-4
Reference: [17] Sharma, A., Sankaranarayanan, A.: Average behavior of the Fourier coefficients of symmetric square $L$-function over some sequence of integers.Integers 22 (2022), Article ID A74, 17 pages. Zbl 07604107, MR 4467003
Reference: [18] Sharma, A., Sankaranarayanan, A.: Discrete mean square of the coefficients of symmetric square $L$-functions on certain sequence of positive numbers.Res. Number Theory 8 (2022), Article ID 19, 13 pages. Zbl 1498.11177, MR 4392068, 10.1007/s40993-022-00319-8
Reference: [19] Sharma, A., Sankaranarayanan, A.: Higher moments of the Fourier coefficients of symmetric square $L$-functions on certain sequence.Rend. Circ. Mat. Palermo (2) (2023), 1399-1416. Zbl 07670402, MR 4559106, 10.1007/s12215-022-00740-z
Reference: [20] Tang, H.: Estimates for the Fourier coefficients of symmetric square $L$-functions.Arch. Math. 100 (2013), 123-130. Zbl 1287.11061, MR 3020126, 10.1007/s11401-016-1013-1
Reference: [21] Vaughan, R. C.: The Hardy-Littlewood Method.Cambridge Tracts in Mathematics 125. Cambridge University Press, Cambridge (1997). Zbl 0868.11046, MR 1435742, 10.1017/CBO9780511470929
Reference: [22] Zhai, S.: Average behavior of Fourier coefficients of cusp forms over sum of two squares.J. Number Theory 133 (2013), 3862-3876. Zbl 1295.11041, MR 3084303, 10.1016/j.jnt.2013.05.013
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo