Previous |  Up |  Next

Article

Title: Padovan and Perrin numbers as products of two generalized Lucas numbers (English)
Author: Adédji, Kouèssi Norbert
Author: Odjoumani, Japhet
Author: Togbé, Alain
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 59
Issue: 4
Year: 2023
Pages: 315-337
Summary lang: English
.
Category: math
.
Summary: Let $P_m$ and $E_m$ be the $m$-th Padovan and Perrin numbers respectively. Let $r, s$ be non-zero integers with $r\ge 1$ and $s\in \lbrace -1, 1\rbrace $, let $\lbrace U_n\rbrace _{n\ge 0}$ be the generalized Lucas sequence given by $U_{n+2}=rU_{n+1} + sU_n$, with $U_0=0$ and $U_1=1.$ In this paper, we give effective bounds for the solutions of the following Diophantine equations \[ P_m=U_nU_k\quad \text{and}\quad E_m=U_nU_k\,, \] where $m$, $ n$ and $k$ are non-negative integers. Then, we explicitly solve the above Diophantine equations for the Fibonacci, Pell and balancing sequences. (English)
Keyword: generalized Lucas numbers
Keyword: linear forms in logarithms
Keyword: reduction method
MSC: 11B39
MSC: 11J86
idZBL: Zbl 07790550
idMR: MR4641949
DOI: 10.5817/AM2023-4-315
.
Date available: 2023-08-15T13:31:51Z
Last updated: 2024-02-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151790
.
Reference: [1] Baker, A., Davenport, H.: The equations $3x^2-2 = y^2$ and $8x^2-7 = z^2$.Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137. MR 0248079
Reference: [2] Bugeaud, Y., Mignotte, M., Siksek, S.: Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas powers.Ann. of Math. (2) 163 (2006), 969–1018. MR 2215137
Reference: [3] Ddamulira, M.: Padovan numbers that are concatenations of two distinct repdigits.Math. Slovaca 71 (2021), 275–284. MR 4243626, 10.1515/ms-2017-0467
Reference: [4] Dujella, A., Pethő, A.: A generalization of a theorem of Baker and Davenport.Quart. J. Math. Oxford Ser. (2) 49 (1998), 291–306. MR 1645552
Reference: [5] Guzmán, S., Luca, F.: Linear combinations of factorials and $s$-units in a binary recurrence sequence.Ann. Math. Qué. 38 (2014), 169–188. MR 3283974
Reference: [6] Kiss, P.: On common terms of linear recurrences.Acta Math. Acad. Sci. Hungar. 40 (1–2) (1982), 119–123. MR 0685998, 10.1007/BF01897310
Reference: [7] Matveev, E.M.: An explicit lower bound for a homogeneous rational linear form in then logarithms of algebraic numbers II.Izv. Math. 64 (2000), 1217–1269. MR 1817252, 10.1070/IM2000v064n06ABEH000314
Reference: [8] Mignotte, M.: Intersection des images de certaines suites récurrentes linéaires.Theoret. Comput. Sci. 7.1 (1978), 117–121. Zbl 0393.10009, MR 0498356, 10.1016/0304-3975(78)90043-9
Reference: [9] Ribenboim, P.: My numbers, my friends. Popular Lectures on Number Theory.Springer-Verlag, Berlin, Heidelberg, 2000. MR 1761897
Reference: [10] Schlickewei, H.P., Schmidt, W.M.: The intersection of recurrence sequences.Acta Arith. 72.1 (1995), 1–4. Zbl 0851.11007, MR 1346803, 10.4064/aa-72-1-1-44
.

Files

Files Size Format View
ArchMathRetro_059-2023-4_2.pdf 547.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo