Previous |  Up |  Next

Article

Keywords:
diophantine equations; primitive divisor theorem; Ramanujan-Nagell equations
Summary:
In this paper, we find all integer solutions $ (x, y, n, a, b, c) $ of the equation in the title for non-negative integers $ a, b$ and $ c $ under the condition that the integers $ x $ and $ y $ are relatively prime and $ n \ge 3$. The proof depends on the famous primitive divisor theorem due to Bilu, Hanrot and Voutier and the computational techniques on some elliptic curves.
References:
[1] Alan, M., Zengin, U.: On the Diophantine equation $x^2+3^a41^b=y^n$. Period. Math. Hung. 81 (2020), 284–291. DOI 10.1007/s10998-020-00321-6 | MR 4169906
[2] Bérczes, A., Pink, I.: On the Diophantine equation $x^2+p^{2k}=y^n$. Arch. Math. (Basel) 91 (2008), 505–517. MR 2465869 | Zbl 1175.11018
[3] Bérczes, A., Pink, I.: On generalized Lebesgue-Ramanujan-Nagell equations. An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 22 (2014), 51–57. MR 3187736
[4] Bilu, Y., Hanrot, G., Voutier, P.M.: Existence of primitive divisors of Lucas and Lehmer numbers (with Appendix by Mignotte). J. Reine Angew. Math. 539 (2001), 75–122. MR 1863855
[5] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), 235–265. DOI 10.1006/jsco.1996.0125 | MR 1484478 | Zbl 0898.68039
[6] Cangúl, I.N., Demirci, M., Inam, M., Luca, F., Soydan, G.: On the Diophantine equation $x^2+2^{a}3^{b}11^{c}=y^n$. Math. Slovaca 63 (2013), 647–659. MR 3071982
[7] Cangúl, I.N., Demirci, M., Luca, F., Pintér, A., Soydan, G.: On the Diophantine equation $x^2+2^a11^b=y^n$. Fibonacci Q. 48 (2010), 39–46. MR 2663418
[8] Carmichael, R.D.: On the numerical factors of the arithmetic forms $ \alpha ^n -\beta ^n $. Ann. Math. 2 (1913), 30–70. MR 1502459
[9] Chakraborty, K., Hoque, A., Sharma, R.: On the solutions of certain Lebesgue-Ramanujan-Nagell equations. Rocky Mountain J. Math. 51 (2021), 459–471. DOI 10.1216/rmj.2021.51.459 | MR 4278721
[10] Ghadermarzi, A.: On the Diophantine equations $ x^2+2^\alpha 3^\beta 19^\gamma =y^n $ and $ x^2+2^\alpha 3^\beta 13^\gamma =y^n $. Math. Slovaca 69 (2019), 507–520. MR 3954019
[11] Godinho, H., Marques, D., Togbé, A.: On the Diophantine equation $x^2+C=y^n$ for $C = 2^{a}3^{b}17^{c}$ and $C = 2^{a}13^{b}17^{c}$. Math. Slovaca 66 (2016), 565–574. MR 3543720
[12] Le, M.H., Soydan, G.: A brief survey on the generalized Lebesgue-Ramanujan-Nagell equation. Surv. Math. Appl. 15 (2020), 473–523. MR 4118124
[13] Luca, F.: On the equation $x^2+2^{a}3^{b}=y^n$. Int. J. Math. Math. Sci. 29 (2002), 239–244. MR 1897992
[14] Luca, F., Togbé, A.: On the equation $x^2+2^{a}5^{b}=y^n$. Int. J. Number Theory 4 (2008), 973–979. MR 2483306
[15] Luca, F., Togbé, A.: On the equation $x^2+2^{\alpha }13^{\beta }=y^n$. Colloq. Math. 116 (2009), 139–146. MR 2504836
[16] Pan, X.: The exponential Lebesgue-Nagell equation $x^2+p^{2m}=y^n $. Period. Math. Hung. 67 (2013), 231–242. DOI 10.1007/s10998-013-3044-7 | MR 3118294
[17] Pink, I.: On the Diophantine equation $x^2+2^{a}3^{b}5^{c}7^{d}=y^n $. Publ. Math. Debrecen 70 (2007), 149–166. DOI 10.5486/PMD.2007.3477 | MR 2288472
[18] Pink, I., Rabai, Z.: On The Diophantine equation $x^2+5^{k}17^{l}=y^n$. Commun. Math. 19 (2011), 1–9. MR 2855388
[19] Soydan, G., Tzanakis, N.: Complete solution of the Diophantine equation $x^2+5^{a}11^{b}=y^n$. Bull. Hellenic Math. Soc. 60 (2016), 125–152. MR 3622880
[20] Soydan, G., Ulas, M., Zhu, H.: On the Diophantine equation $x^2+2^{a}19^{b}=y^n$. Indian J. Pure Appl. Math. 43 (2012), 251–261. MR 2955592
[21] Tho, N.X.: Solutions to A Lebesgue-Nagell equation. Bull. Aust. Math. Soc. 105 (2022), 19–30. MR 4365058
[22] Zhu, H., Le, M., Soydan, G., Togbé, A.: On the exponential Diophantine equation $x^2+2^{a}p^{b}=y^n$. Period. Math. Hung. 70 (2015), 233–247. DOI 10.1007/s10998-014-0073-9 | MR 3344003
Partner of
EuDML logo