Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
locally symmetric semi-Riemannian space; mean curvature vector field; complete linear Weingarten spacelike submanifold; totally umbilical submanifold; isoparametric submanifold; $\mathcal L$-parabolicity
Summary:
In this paper, we deal with $n$-dimensional complete linear Weingarten spacelike submanifolds immersed with parallel normalized mean curvature vector field and flat normal bundle in a locally symmetric semi-Riemannian space $L_{p}^{n+p}$ of index $p>1$, which obeys some curvature constraints (such an ambient space can be regarded as an extension of a semi-Riemannian space form). Under appropriate hypothesis, we are able to prove that such a spacelike submanifold is either totally umbilical or isometric to an isoparametric submanifold of the ambient space. For this, we use three main core analytical tools: a suitable version of the Omori--Yau maximum principle, parabolicity with respect to a modified Cheng--Yau operator and a certain integrability property.
References:
[1] Alías L. J., Mastrolia P., Rigoli M.: Maximum Principles and Geometric Applications. Springer Monographs in Mathematics, Springer, Cham, 2016. MR 3445380
[2] Araújo J. G., Barboza W. F., de Lima H. F., Velásquez M. A. L.: On the linear Weingarten spacelike submanifolds immersed in a locally symmetric semi-Riemannian space. Beitr. Algebra Geom. 61 (2020), no. 2, 267–282. DOI 10.1007/s13366-019-00469-4 | MR 4090931
[3] Araújo J. G., de Lima H. F., dos Santos F. R., Velásquez M. A. L.: Characterizations of complete linear Weingarten spacelike submanifolds in a locally symmetric semi-Riemannian manifold. Extracta Math. 32 (2017), no. 1, 55–81. MR 3726524
[4] Baek J. O., Cheng Q.-M., Suh Y. J.: Complete space-like hypersurface in locally symmetric Lorentz spaces. J. Geom. Phys. 49 (2004), no. 2, 231–247. DOI 10.1016/S0393-0440(03)00090-1 | MR 2077302
[5] Beem J. K., Ehrlich P. E., Easley K. L.: Global Lorentzian Geometry. Monographs and Textbooks in Pure and Applied Mathematics, 202, Marcel Dekker, New York, 1996. MR 1384756 | Zbl 0846.53001
[6] Brendle S.: Einstein manifolds with nonnegative isotropic curvature are locally symmetric. Duke Math. J. 151 (2010), no. 1, 1–21. DOI 10.1215/00127094-2009-061 | MR 2573825
[7] Calabi E.: Examples of Bernstein problems for some nonlinear equations. Proc. Sympos. Pure Math. 15 (1970), 223–230. MR 0264210
[8] Caminha A.: The geometry of closed conformal vector fields on Riemannian spaces. Bull. Braz. Math. Soc. (N.S.) 42 (2011), no. 2, 277–300. DOI 10.1007/s00574-011-0015-6 | MR 2833803 | Zbl 1242.53068
[9] Cheng S. Y., Yau S. T.: Maximal space-like hypersurfaces in the Lorentz–Minkowski space. Ann. of Math. (2) 104 (1976), no. 3, 407–419. DOI 10.2307/1970963 | MR 0431061
[10] Cheng S. Y., Yau S. T.: Hypersurfaces with constant scalar curvature. Math. Ann. 225 (1977), no. 3, 195–204. DOI 10.1007/BF01425237 | MR 0431043 | Zbl 0349.53041
[11] Chern S. S., do Carmo M. P., Kobayashi S.: Minimal submanifolds of a sphere with second fundamental form of constant length. Global Analysis, Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, 1968, Amer. Math. Soc., Providence, 1970, pages 223–230. MR 0273546
[12] de Lima H. F., de Lima J. R.: Characterizations of linear Weingarten spacelike hypersurfaces in Einstein spacetimes. Glasg. Math. J. 55 (2013), no. 3, 567–579. DOI 10.1017/S0017089512000754 | MR 3084661
[13] de Lima H. F., de Lima J. R.: Complete linear Weingarten spacelike hypersurfaces immersed in a locally symmetric Lorentz space. Results Math. 63 (2013), no. 3–4, 865–876. DOI 10.1007/s00025-012-0237-y | MR 3057342
[14] de Lima H. F., dos Santos F. R., Araújo J. G., Velásquez M. A. L.: Complete maximal spacelike submanifolds immersed in a locally symmetric semi-Riemannian space. Houston J. Math. 43 (2017), no. 4, 1099–1110. MR 3766359
[15] de Lima H. F., dos Santos F. R., Gomes J. N., Velásquez M. A. L.: On the complete spacelike hypersurfaces immersed with two distinct principal curvatures in a locally symmetric Lorentz space. Collect. Math. 67 (2016), no. 3, 379–397. DOI 10.1007/s13348-015-0145-z | MR 3536051
[16] de Lima H. F., dos Santos F. R., Velásquez M. A. L.: On the umbilicity of complete linear Weingarten spacelike hypersurfaces immersed in a locally symmetric Lorentz space. São Paulo J. Math. Sci. 11 (2017), no. 2, 456–470. DOI 10.1007/s40863-017-0075-7 | MR 3716700
[17] Galloway G. J., Senovilla J. M. M.: Singularity theorems based on trapped submanifolds of arbitrary co-dimension. Classical Quantum Gravity 27 (2010), no. 15, 152002, 10 pages. DOI 10.1088/0264-9381/27/15/152002 | MR 2659235
[18] Grigor'yan A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 2, 135–249. DOI 10.1090/S0273-0979-99-00776-4 | MR 1659871 | Zbl 0927.58019
[19] Hawking S. W., Ellis G. F. R.: The Large Scale Structure of Space-time. Cambridge Monographs on Mathematical Physics, 1, Cambridge University Press, London, 1973. MR 4615777
[20] Ishihara T.: Maximal spacelike submanifolds of a pseudo-Riemannian space of constant curvature. Michigan Math. J. 35 (1988), no. 3, 345–352. DOI 10.1307/mmj/1029003815 | MR 0978304
[21] Liang Z., Zhang X.: Spacelike hypersurfaces with negative total energy in de Sitter spacetime. J. Math. Phys. 53 (2012), no. 2, 022502, 10 pages. DOI 10.1063/1.3682242 | MR 2920460
[22] Liu J., Sun Z.: On spacelike hypersurfaces with constant scalar curvature in locally symmetric Lorentz spaces. J. Math. Anal. App. 364 (2010), no. 1, 195–203. DOI 10.1016/j.jmaa.2009.10.029 | MR 2576063
[23] Marsden J. E., Tipler F. J.: Maximal hypersurfaces and foliations of constant mean curvature in general relativity. Phys. Rep. 66 (1980), no. 3, 109–139. DOI 10.1016/0370-1573(80)90154-4 | MR 0598585
[24] Micallef M. J., Wang M. Y.: Metrics with nonnegative isotropic curvature. Duke Math. J. 72 (1993), no. 3, 649–672. DOI 10.1215/S0012-7094-93-07224-9 | MR 1253619
[25] Nishikawa S.: On maximal spacelike hypersurfaces in a Lorentzian manifold. Nagoya Math. J. 95 (1984), 117–124. DOI 10.1017/S0027763000021024 | MR 0759469
[26] O'Neill B.: Semi-Riemannian Geometry. With Applications to Relativity, Pure and Applied Mathematics, 103, Academic Press, New York, 1983. MR 0719023
[27] Penrose R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14 (1965), 57–59. DOI 10.1103/PhysRevLett.14.57 | MR 0172678
[28] Pigola S., Rigoli M., Setti A. G.: A Liouville-type result for quasi-linear elliptic equations on complete Riemannian manifolds. J. Funct. Anal. 219 (2005), no. 2, 400–432. DOI 10.1016/j.jfa.2004.05.009 | MR 2109258
[29] Pigola S., Rigoli M., Setti A. G.: Maximum Principles on Riemannian Manifolds and Applications. Mem. Amer. Math. Soc., 174, no. 822, 2005. MR 2116555
[30] Senovilla J. M. M.: Singularity theorems in general relativity: Achievements and open questions. in Einstein and the Changing Worldviews of Physics, Einstein Studies, 12, Birkhäuser, Boston, 2011, pages 305–316.
[31] Stumbles S. M.: Hypersurfaces of constant mean extrinsic curvature. Ann. Physics 133 (1981), no. 1, 28–56. DOI 10.1016/0003-4916(81)90240-2 | MR 0626082
[32] Tod K. P.: Four-dimensional D'Atri Einstein spaces are locally symmetric. Differential Geom. Appl. 11 (1999), no. 1, 55–67. DOI 10.1016/S0926-2245(99)00024-8 | MR 1702467
[33] Treibergs A. E.: Entire spacelike hypersurfaces of constant mean curvature in Minkowski space. Invent. Math. 66 (1982), no. 1, 39–56. DOI 10.1007/BF01404755 | MR 0652645
[34] Xu H.-W., Gu J.-R.: Rigidity of Einstein manifolds with positive scalar curvature. Math. Ann. 358 (2014), no. 1–2, 169–193. DOI 10.1007/s00208-013-0957-7 | MR 3157995
[35] Yau S. T.: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. Indiana Univ. Math. J. 25 (1976), no. 7, 659–670. DOI 10.1512/iumj.1976.25.25051 | MR 0417452
Partner of
EuDML logo