Previous |  Up |  Next

Article

Title: Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems (English)
Author: Huang, Shao-Yuan
Author: Hsieh, Ping-Han
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 4
Year: 2023
Pages: 1081-1098
Summary lang: English
.
Category: math
.
Summary: We study the exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems$$ \begin {cases} -[\phi (u^{\prime })]^{\prime }=\lambda u^{p} \Bigl (1-\dfrac {u}{N} \Bigr ) & \text {in} \^^M( -L,L) , \\ u(-L)=u(L)=0,\end {cases} $$ where $p>1$, $N>0$, $\lambda >0$ is a bifurcation parameter, $L>0$ is an evolution parameter, and $\phi (u)$ is either $\phi (u)=u$ or $\phi (u)=u/\sqrt {1-u^{2}}$. We prove that the corresponding bifurcation curve is $\subset $-shape. Thus, the exact multiplicity of positive solutions can be obtained. (English)
Keyword: positive solution
Keyword: bifurcation curve
Keyword: Minkowski-curvature problem, logistic problem
MSC: 34B15
MSC: 34B18
MSC: 34C23
MSC: 74G35
DOI: 10.21136/CMJ.2023.0359-22
.
Date available: 2023-11-23T12:21:50Z
Last updated: 2023-11-27
Stable URL: http://hdl.handle.net/10338.dmlcz/151948
.
Reference: [1] Bartnik, R., Simon, L.: Spacelike hypersurfaces with prescribed boundary values and mean curvature.Commun. Math. Phys. 87 (1982), 131-152. Zbl 0512.53055, MR 0680653, 10.1007/BF01211061
Reference: [2] Chafee, N., Infante, E. F.: A bifurcation problem for a nonlinear partial differential equation of parabolic type.Appl. Anal. 4 (1974), 17-37. Zbl 0296.35046, MR 0440205, 10.1080/00036817408839081
Reference: [3] Coelho, I., Corsato, C., Obersnel, F., Omari, P.: Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation.Adv. Nonlinear Stud. 12 (2012), 621-638. Zbl 1263.34028, MR 2976056, 10.1515/ans-2012-0310
Reference: [4] Corsato, C.: Mathematical Analysis of Some Differential Models Involving the Euclidean or the Minkowski Mean Curvature Operator: Ph.D. Thesis.University of Trieste, Trieste (2015), Available at http://hdl.handle.net/10077/11127\kern0pt.
Reference: [5] Feynman, R. P., Leighton, R. B., Sands, M.: The Feynman Lectures on Physics. II. Mainly Electromagnetism and Matter.Addison-Wesley, Reading (1964). Zbl 0131.38703, MR 0213078
Reference: [6] Guedda, M., Véron, L.: Bifurcation phenomena associated to the $p$-Laplace operator.Trans. Am. Math. Soc. 310 (1988), 419-431. Zbl 0713.34049, MR 0965762, 10.1090/S0002-9947-1988-0965762-2
Reference: [7] Huang, S.-Y.: Classification and evolution of bifurcation curves for the one-dimensional Minkowski-curvature problem and its applications.J. Differ. Equations 264 (2018), 5977-6011. Zbl 1390.34051, MR 3765772, 10.1016/j.jde.2018.01.021
Reference: [8] Huang, S.-Y.: Exact multiplicity and bifurcation curves of positive solutions of a one- dimensional Minkowski- curvature problem and its application.Commun. Pure Appl. Anal. 17 (2018), 1271-1294. Zbl 1398.34034, MR 3809123, 10.3934/cpaa.2018061
Reference: [9] Huang, S.-Y.: Bifurcation diagrams of positive solutions for one-dimensional Minkowski- curvature problem and its applications.Discrete Contin. Dyn. Syst. 39 (2019), 3443-3462. Zbl 1419.34086, MR 3959436, 10.3934/dcds.2019142
Reference: [10] Huang, S.-Y.: Global bifurcation and exact multiplicity of positive solutions for the one-dimensional Minkowski-curvature problem with sign-changing nonlinearity.Commun. Pure Appl. Anal. 18 (2019), 3267-3284. Zbl 1493.34056, MR 3985384, 10.3934/cpaa.2019147
Reference: [11] Hung, K.-C., Huang, S.-Y., Wang, S.-H.: A global bifurcation theorem for a positone multiparameter problem and its application.Discrete Contin. Dyn. Syst. 37 (2017), 5127-5149. Zbl 1378.34041, MR 3668355, 10.3934/dcds.2017222
Reference: [12] Hung, K.-C., Wang, S.-H.: Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity and their applications.Trans. Am. Math. Soc. 365 (2013), 1933-1956. Zbl 1282.34031, MR 3009649, 10.1090/S0002-9947-2012-05670-4
Reference: [13] Laetsch, T.: The number of solutions of a nonlinear two point boundary value problem.Indiana Univ. Math. J. 20 (1970), 1-13. Zbl 0215.14602, MR 0269922, 10.1512/iumj.1970.20.20001
Reference: [14] McCabe, P. M., Leach, J. A., Needham, D. J.: The evolution of travelling waves in fractional order autocatalysis with decay. I. Permanent from travelling waves.SIAM J. Appl. Math. 59 (1999), 870-899. Zbl 0938.35075, MR 1661239, 10.1137/S003613999631259
Reference: [15] Shi, J., Shivaji, R.: Persistence in reaction diffusion models with weak Allee effect.J. Math. Biol. 52 (2006), 807-829. Zbl 1110.92055, MR 2235529, 10.1007/s00285-006-0373-7
Reference: [16] Takeuchi, S., Yamada, Y.: Asymptotic properties of a reaction-diffusion equation with degenerate $p$-Laplacian.Nonlinear Anal., Theory Methods Appl., Ser. A 42 (2000), 41-61. Zbl 0961.35075, MR 1769251, 10.1016/S0362-546X(98)00329-0
Reference: [17] Verhulst, P. F.: Notice sur la loi que la population poursuit dans son accroissement.Corresp. Math. Phys. 10 (1838), 113-121 French.
Reference: [18] Wang, M.-H., Kot, M.: Speeds of invasion in a model with strong or weak Allee effects.Math. Biosci. 171 (2001), 83-97. Zbl 0978.92033, MR 1839210, 10.1016/S0025-5564(01)00048-7
Reference: [19] Xin, J.: Front propagation in heterogeneous media.SIAM Rev. 42 (2000), 161-230. Zbl 0951.35060, MR 1778352, 10.1137/S0036144599364296
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo