Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
algebraic $K$-theory; Dedekind zeta function; Artin $L$-function; Beilinson regulator; generalized index; Lichtenbaum conjecture
Summary:
Let $F/k$ be a finite abelian extension of number fields with $k$ imaginary quadratic. Let $O_F$ be the ring of integers of $F$ and $n\geq 2$ a rational integer. We construct a submodule in the higher odd-degree algebraic $K$-groups of $O_F$ using corresponding Gross's special elements. We show that this submodule is of finite index and prove that this index can be computed using the higher ``twisted'' class number of $F$, which is the cardinal of the finite algebraic $K$-group $K_{2n-2}(O_F)$.
References:
[1] Borel, A.: Cohomologie de ${SL}_n$ et valeurs de fonctions zeta aux points entiers. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 4 (1977), 613-636 French. MR 0506168 | Zbl 0382.57027
[2] Bourbaki, N.: Elements of Mathematics: Commutative Algebra. Hermann, Paris (1972). MR 0360549 | Zbl 0279.13001
[3] Gil, J. I. Burgos: The Regulators of Beilinson and Borel. CRM Monograph Series 15. AMS, Providence (2002). DOI 10.1090/crmm/015 | MR 1869655 | Zbl 0994.19003
[4] Deninger, C.: Higher regulators and Hecke $L$-series of imaginary quadratic fields. II. Ann. Math. (2) 132 (1990), 131-158. DOI 10.2307/1971502 | MR 1059937 | Zbl 0721.14005
[5] Boukhari, S. El: Fitting ideals of isotypic parts of even $K$-groups. Manuscr. Math. 157 (2018), 23-49. DOI 10.1007/s00229-017-0991-y | MR 3845757 | Zbl 1414.11138
[6] Boukhari, S. El: Higher Stickelberger ideals and even $K$-groups. Proc. Am. Math. Soc. 150 (2022), 3231-3239. DOI 10.1090/proc/15837 | MR 4439448 | Zbl 1506.11147
[7] Boukhari, S. El: On a Gross conjecture over imaginary quadratic fields. Available at https://arxiv.org/abs/2302.04049 (2023), 17 pages. DOI 10.48550/arXiv.2302.04049
[8] Flach, M.: The equivariant Tamagawa number conjecture: A survey. Stark's Conjectures: Recent Work and New Directions Contemporary Mathematics 358. AMS, Providence (2004), 79-125. DOI 10.1090/conm/358 | MR 2088713 | Zbl 1070.11025
[9] Ghate, E.: Vandiver's conjecture via $K$-theory. Cyclotomic Fields and Related Topics Bhaskaracharya Pratishthana, Pune (2000), 285-298. MR 1802389 | Zbl 1048.11083
[10] Gross, B. H.: On the values of Artin $L$-functions. Pure Appl. Math. Q. 1 (2005), 1-13. DOI 10.4310/PAMQ.2005.v1.n1.a1 | MR 2154331 | Zbl 1169.11050
[11] Johnson-Leung, J.: The local equivariant Tamagawa number conjecture for almost abelian extensions. Women in Numbers 2: Research Directions in Number Theory Contemporary Mathematics 606. AMS, Providence (2013), 1-27. DOI 10.1090/conm/606 | MR 3204289 | Zbl 1286.11176
[12] Klingen, H.: Über die Werte der Dedekindschen Zetafunktion. Math. Ann. 145 (1962), 265-272 German. DOI 10.1007/BF01451369 | MR 0133304 | Zbl 0101.03002
[13] Kolster, M., Do, T. Nguyen Quang, Fleckinger, V.: Twisted $S$-units, $p$-adic class number formulas, and the Lichtenbaum conjectures. Duke Math. J. 84 (1996), 679-717. DOI 10.1215/S0012-7094-96-08421-5 | MR 1408541 | Zbl 0863.19003
[14] Kurihara, M.: Some remarks on conjectures about cyclotomic fields and $K$-groups of $\Bbb{Z}$. Compos. Math. 81 (1992), 223-236. DOI 0747.11055 | MR 1145807 | Zbl 0747.11055
[15] Mazur, B., Wiles, A.: Class fields of abelian extensions of $\Bbb{Q}$. Invent. Math. 76 (1984), 179-331. DOI 10.1007/BF01388599 | MR 0742853 | Zbl 0545.12005
[16] Neukirch, J.: The Beilinson conjecture for algebraic number fields. Beilinson's Conjectures on Special Values of $L$-Functions Perspectives in Mathematics 4. Academic Press, Boston (1988), 193-247. MR 0944995 | Zbl 0651.12009
[17] Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of Number Fields. Grundlehren der Mathematischen Wissenschaften 323. Springer, Berlin (2000). DOI 10.1007/978-3-540-37889-1 | MR 1737196 | Zbl 0948.11001
[18] Nickel, A.: Leading terms of Artin $L$-series at negative integers and annihilation of higher $K$-groups. Math. Proc. Camb. Philos. Soc. 151 (2011), 1-22. DOI 10.1017/S0305004111000193 | MR 2801311 | Zbl 1254.11096
[19] Rapoport, M., Schappacher, N., (eds.), P. Schneider: Beilinson's Conjectures on Special Values of $L$-Functions. Perspectives in Mathematics 4. Academic Press, Boston (1988). DOI 10.1016/c2013-0-11352-9 | MR 0944987 | Zbl 0635.00005
[20] Siegel, C. L.: Über die Fourierschen Koeffizienten von Modulformen. Nachr. Akad. Wiss. Göttingen, II. Math.-Phys. Kl. 1970 (1970), 15-56 German. MR 0285488 | Zbl 0225.10031
[21] Sinnott, W.: On the Stickelberger ideal and the circular units of an abelian field. Invent. Math. 62 (1980), 181-234. DOI 10.1007/BF01389158 | MR 0595586 | Zbl 0465.12001
[22] Snaith, V. P.: Stark's conjecture and new Stickelberger phenomena. Can. J. Math. 58 (2006), 419-448. DOI 10.4153/CJM-2006-018-5 | MR 2209286 | Zbl 1215.11111
[23] Soulé, C.: $K$-théorie des anneaux d'entiers de corps de nombres et cohomologie étale. Invent. Math. 55 (1979), 251-295 French. DOI 10.1007/BF01406843 | MR 0553999 | Zbl 0437.12008
[24] Soulé, C.: On higher $p$-adic regulators. Algebraic $K$-Theory Lecture Notes in Mathematics 854. Springer, Berlin (1981), 372-401. DOI 10.1007/BFb0089530 | MR 0618313 | Zbl 0488.12008
[25] Soulé, C.: Perfect forms and Vandiver conjecture. J. Reine Angew. Math. 517 (1999), 209-221. DOI 10.1515/crll.1999.095 | MR 1728540 | Zbl 1012.11094
[26] Sun, C.: The Lichtenbaum conjecture for abelian extension of imaginary quadratic fields. Available at https://arxiv.org/abs/2112.12314 (2021), 17 pages. DOI 10.48550/arXiv.2112.12314
[27] Tate, J.: Les conjectures de Stark sur les fonctions $L$ d'Artin en $s=0$. Progress in Mathematics 47. Birkhäuser, Boston (1984), French. MR 0782485 | Zbl 0545.12009
[28] Viguié, S.: Index-modules and applications. Manuscr. Math. 136 (2011), 445-460. DOI 10.1007/s00229-011-0452-y | MR 2844820 | Zbl 1264.11093
[29] Voevodsky, V.: On motivic cohomology with $\Bbb{Z}/l$-coefficients. Ann. Math. (2) 174 (2011), 401-438. DOI 10.4007/annals.2011.174.1.11 | MR 2811603 | Zbl 1236.14026
[30] Wiles, A.: The Iwasawa conjecture for totally real fields. Ann. Math. (2) 131 (1990), 493-540. DOI 10.2307/1971468 | MR 1053488 | Zbl 0719.11071
Partner of
EuDML logo