Previous |  Up |  Next

Article

Keywords:
fractional difference equation; nonoscillatory; Caputo fractional difference; forcing term
Summary:
This paper aims at discussing asymptotic behaviour of nonoscillatory solutions of the forced fractional difference equations of the form \begin{align} \Delta ^{\gamma }u(\kappa )&+\Theta [\kappa +\gamma ,w(\kappa +\gamma )]\\=&\Phi (\kappa +\gamma )+\Upsilon (\kappa +\gamma )w^{\nu }(\kappa +\gamma ) +\Psi [\kappa +\gamma ,w(\kappa +\gamma )],\quad \kappa \in \mathbb {N}_{1-\gamma },\\ u_{0} =&c_{0}, \end{align} where $\mathbb {N}_{1-\gamma }=\{1-\gamma ,2-\gamma ,3-\gamma ,\cdots \}$, $0<\gamma \leq 1$, $\Delta ^{\gamma }$ is a Caputo-like fractional difference operator. Three cases are investigated by using some salient features of discrete fractional calculus and mathematical inequalities. Examples are presented to illustrate the validity of the theoretical results.
References:
[1] Alzabut, J., Abdeljawad, T.: Sufficient conditions for the oscillation of nonlinear fractional difference equations. J. Fract. Calc. Appl. 5 (2014), 177-187. MR 3234107 | Zbl 07444530
[2] Alzabut, J., Abdeljawad, T., Alrabaiah, H.: Oscillation criteria for forced and damped nabla fractional difference equations. J. Comput. Anal. Appl. 24 (2018), 1387-1394. MR 3753400
[3] Alzabut, J., Muthulakshmi, V., Özbekler, A., Ad\igüzel, H.: On the oscillation of nonlinear fractional difference equations with damping. Mathematics 7 (2019), Article ID 687, 14 pages. DOI 10.3390/math7080687
[4] Atangana, A., Gómez-Aguilar, J. F.: Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena. Eur. Phys. J. Plus 133 (2018), Article ID 166, 22 pages. DOI 10.1140/epjp/i2018-12021-3
[5] At\icı, F. M., Eloe, P. W.: A transform method in discrete fractional calculus. Int. J. Difference Equ. 2 (2007), 165-176. MR 2493595
[6] At\icı, F. M., Şengül, S.: Modeling with fractional difference equations. J. Math. Anal. Appl. 369 (2010), 1-9. DOI 10.1016/j.jmaa.2010.02.009 | MR 2643839 | Zbl 1204.39004
[7] Chatzarakis, G. E., Selvam, A. G. M., Janagaraj, R., Miliaras, G. N.: Oscillation criteria for a class of nonlinear discrete fractional order equations with damping term. Math. Slovaca 70 (2020), 1165-1182. DOI 10.1515/ms-2017-0422 | MR 4156816 | Zbl 1479.39010
[8] Chen, F.: Fixed points and asymptotic stability of nonlinear fractional difference equations. Electron. J. Qual. Theory Differ. Equ. 2011 (2011), Article ID 39, 18 pages. DOI 10.14232/ejqtde.2011.1.39 | MR 2805759 | Zbl 1340.26013
[9] Elaydi, S. N.: An Introduction to Difference Equations. Undergraduate Texts in Mathematics. Springer, New York (2005). DOI 10.1007/0-387-27602-5 | MR 2128146 | Zbl 1071.39001
[10] Grace, S. R., Graef, J. R., Tunç, E.: On the boundedness of nonoscillatory solutions of certain fractional differential equations with positive and negative terms. Appl. Math. Lett. 97 (2019), 114-120. DOI 10.1016/J.AML.2019.05.032 | MR 3957498 | Zbl 1425.34012
[11] Grace, S. R., Zafer, A.: On the asymptotic behavior of nonoscillatory solutions of certain fractional differential equations. Eur. Phys. J. Spec. Top. 226 (2017), 3657-3665. DOI 10.1140/epjst/e2018-00043-1 | MR 3783546
[12] Graef, J. R., Grace, S. R., Tunç, E.: On the asymptotic behavior of nonoscillatory solutions of certain fractional differential equations with positive and negative terms. Opusc. Math. 40 (2020), 227-239. DOI 10.7494/OpMath.2020.40.2.227 | MR 4087615 | Zbl 1437.34006
[13] Holm, M.: The Theory of Discrete Fractional Calculus: Development and Application. University of Nebraska, Lincoln (2011). MR 2873503
[14] Holte, J. M.: Discrete Gronwall lemma and applications. MAA North Central Section Meeting at the University of North Dakota. Available at http://homepages.gac.edu/ {holte/publications/GronwallLemma.pdf} (2009), 1-8.
[15] Ionescu, C., Lopes, A., Copot, D., Machado, J. A. T., Bates, J. H. T.: The role of fractional calculus in modeling biological phenomena: A review. Commun. Nonlinear Sci. Numer. Simul. 51 (2017), 141-159. DOI 10.1016/j.cnsns.2017.04.001 | MR 3645874 | Zbl 1467.92050
[16] Kumar, D., Baleanu, D.: Editorial. Fractional Calculus and Its Applications in Physics Frontiers in Physics 7. Frontiers Media, London (2019), 1-4. DOI 10.3389/fphy.2019.00081
[17] Selvam, A. G. M., Alzabut, J., Janagaraj, R., Adiguzel, H.: Oscillation analysis for nonlinear discrete fractional order delay and neutral equations with forcing term. Dyn. Syst. Appl. 29 (2020), 327-342. DOI 10.46719/dsa20202929
[18] Selvam, A. G. M., Jacintha, M., Janagaraj, R.: Existence of nonoscillatory solutions of nonlinear neutral delay difference equation of fractional order. Adv. Math. Sci. J. 9 (2020), 4971-4983. DOI 10.37418/amsj.9.7.62
[19] Selvam, A. G. M., Janagaraj, R.: Oscillation criteria of a class of fractional order damped difference equations. Int. J. Appl. Math. 32 (2019), 433-441. DOI 10.12732/ijam.v32i3.5
[20] Selvam, A. G. M., Janagaraj, R.: New oscillation criteria for discrete fractional order forced nonlinear equations. J. Phys., Conf. Ser. 1597 (2020), Article ID 012057, 8 pages. DOI 10.1088/1742-6596/1597/1/012057
[21] Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64 (2018), 213-231. DOI 10.1016/j.cnsns.2018.04.019 | Zbl 07265270
Partner of
EuDML logo