Previous |  Up |  Next

Article

Keywords:
convexity; sequential semicontinuity; calculus of variation; minimizer
Summary:
The weak lower semicontinuity of the functional $$ F(u)=\int_{\Omega}f(x,u,\nabla u) {\rm d} x $$ is a classical topic that was studied thoroughly. It was shown that if the function $f$ is continuous and convex in the last variable, the functional is sequentially weakly lower semicontinuous on $W^{1,p}(\Omega)$. However, the known proofs use advanced instruments of real and functional analysis. Our aim here is to present a proof understandable even for students familiar only with the elementary measure theory.
References:
[1] Acerbi, E., Fusco, N.: Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86 (1984), 2, 125-145. DOI  | MR 0751305
[2] Alibert, J.-J., Dacorogna, B.: An example of a quasiconvex function that is not polyconvex in two dimensions. Arch. Rational Mech. Anal. 117 (1992), 2, 155-166. DOI  | MR 1145109
[3] Ball, J. M., Kirchheim, B., Kristensen, J.: Regularity of quasiconvex envelopes. Calc. Var. Partial Differential Equations 11 (2000), 4, 333-359. DOI  | MR 1808126
[4] Benešová, B., Kružík, M.: Weak lower semicontinuity of integral functionals and applications. SIAM Rev. 59 (2017), 4, 703-766. DOI  | MR 3720354
[5] Bourdin, B., Francfort, G. A., Marigo, J.-J.: The variational approach to fracture. J. Elasticity 91 (2008), 1-3, 5-148. DOI  | MR 2390547
[6] Dacorogna, B.: Weak Continuity and Weak Lower Semicontinuity of Nonlinear Functionals. Lecture Notes in Mathematics Vol. 922, Springer-Verlag, Berlin - New York 1982. DOI 10.1007/BFb0096144 | MR 0658130
[7] Dacorogna, B.: Direct Methods in the Calculus of Variations, Vol. 78. Springer Science and Business Media, 2007. DOI  | MR 2361288
[8] Bois-Reymond, P. du: Erläuterungen zu den anfangsgründen der variationsrechnung. Math. Ann. 15 (1879), 2, 283-314. DOI  | MR 1510012
[9] Eisen, G.: A selection lemma for sequences of measurable sets, and lower semicontinuity of multiple integrals. Manuscripta Math. 27 (1979), 1, 73-79. DOI  | MR 0524978
[10] Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47 (1974), 324-353. DOI 10.1016/0022-247X(74)90025-0 | MR 0346619 | Zbl 0286.49015
[11] Ekeland, I.: Nonconvex minimization problems. Bull. Amer. Math. Soc. (N.S.) 1 (1979), 3, 443-474. DOI  | MR 0526967 | Zbl 0441.49011
[12] Ekeland, I., Temam, R.: Analyse convexe et problèmes variationnels. Collection Études Mathématiques. Dunod, Paris, Gauthier-Villars, Paris - Brussels - Montreal 1974. MR 0463993
[13] Fonseca, I., Malý, J.: Relaxation of multiple integrals below the growth exponent. Ann. Inst. H. Poincaré C Anal. Non Linéaire 14 (1997), 3, 309-338. DOI 10.1016/s0294-1449(97)80139-4 | MR 1450951
[14] Fonseca, I., Müller, S.: A-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30 (1999), 6, 1355-1390. DOI  | MR 1718306
[15] Giaquinta, M., Giusti, E.: On the regularity of the minima of variational integrals. Acta Math. 148 (1982), 31-46. DOI  | MR 0666107
[16] Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific, 2003. MR 1962933
[17] Grabovsky, Y.: From microstructure-independent formulas for composite materials to rank-one convex, non-quasiconvex functions. Arch. Ration. Mech. Anal. 227 (2018), 2, 607-636. DOI  | MR 3740383
[18] Guerra, A., Kristensen, J.: Automatic quasiconvexity of homogeneous isotropic rank-one convex integrands. Arch. Ration. Mech. Anal. 245 (2022), 1, 479-500. DOI  | MR 4444078
[19] Kałamajska, A.: On lower semicontinuity of multiple integrals. Colloq. Math. 74 (1997), 1, 71-78. DOI  | MR 1455456
[20] Kristensen, J.: Lower semicontinuity in spaces of weakly differentiable functions. Math. Ann. 313 (1999), 4, 653-710. DOI  | MR 1686943
[21] Kristensen, J.: A necessary and sufficient condition for lower semicontinuity. Nonlinear Anal. 120 (2015), 43-56. DOI  | MR 3348045
[22] Kristensen, J., Rindler, F.: Characterization of generalized gradient Young measures generated by sequences in $W^{1,1}$ and BV. Arch. Ration. Mech. Anal. 197 (2010), 2, 539-598. DOI  | MR 2660519
[23] Lagrange, J. L.: Mécanique analytique, Vol. 1. Mallet - Bachelier, 1853. MR 2858305
[24] Leoni, G.: A First Course in Sobolev Spaces, Vol. 181 Graduate Studies in Mathematics. (Second edition.). American Mathematical Society, Providence 2017. MR 3726909
[25] Lukeš, J., Malý, J.: Measure and Integral. (Second edition.). Matfyzpress, Prague 2005. MR 2316454
[26] Marcellini, P.: Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals. Manuscr. Math. 51 (1985), 1-3, 1-28. DOI 10.1007/BF01168345 | MR 0788671
[27] Marcellini, P., Sbordone, C.: Semicontinuity problems in the calculus of variations. Nonlinear Anal. 4 (1980), 2, 241-257. DOI  | MR 0563807
[28] Meyers, N. G.: Quasi-convexity and lower semi-continuity of multiple variational integrals of any order. Trans. Amer. Math. Soc. 119 (1965), 125-149. DOI  | MR 0188838
[29] Mingione, G.: Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math. 51 (2006), 4, 355-426. DOI  | MR 2291779
[30] Morrey, Ch. B., Jr.: Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math. 2 (1952), 25-53. DOI  | MR 0054865
[31] Prinari, F.: On the lower semicontinuity and approximation of $L^\infty$-functionals. NoDEA Nonlinear Differential Equations Appl. 22 (2015), 6, 1591-1605. DOI  | MR 3415015
[32] Serrin, J.: On the definition and properties of certain variational integrals. Trans. Amer. Math. Soc. 101 (1961), 139-167. DOI  | MR 0138018
[33] Sil, S.: Calculus of variations: a differential form approach. Adv. Calc. Var. 12 (2019), 1, 57-84. DOI 10.1515/acv-2016-0058 | MR 3898186
[34] Tonelli, L.: La semicontinuità nel calcolo delle variazioni. Rendiconti del Circolo Matematico di Palermo (1884-1940), 44 (1920), 1, 167-249. DOI 
[35] Verde, A., Zecca, G.: Lower semicontinuity of certain quasiconvex functionals in Orlicz-Sobolev spaces. Nonlinear Anal. 71 (2009), 10, 4515-4524. DOI  | MR 2548683
[36] Šverák, V.: Rank-one convexity does not imply quasiconvexity. Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), 1-2, 185-189. MR 1149994
Partner of
EuDML logo