[3] Albeverio, S., Kondratiev, Yu.G., Röckner, M.:
Differential geometry of Poisson spaces. C.R. Acad. Sci. Paris 323 (1996), 1129–1134.
MR 1423438
[5] Albeverio, S., Kondratiev, Yu.G., Röckner, M.:
Analysis and geometry on configuration spaces: The Gibbsian case. J. Funct. Anal. 157 (1998), 242–291.
DOI 10.1006/jfan.1997.3215 |
MR 1637949
[6] Dubois-Violette, M.:
Lectures on graded differential algebras and noncommutative geometry. Noncommutative differential geometry and its applications to physics, Springer, Dordrecht, 2001, arXiv:math/9912017 [math.QA], pp. 245–306.
MR 1910544
[9] Fukushima, M.:
Dirichlet forms and Markov processes. Amsterdam, North-Holland Pub. Company, 1980.
MR 0569058
[10] Gracia-Bondia, J.M., Várilly, J.C., Figuerora, H.:
Elements of noncommutative geometry. Springer Science & Business Media, New York, 2021.
MR 1789831
[12] Kuchling, P.: Analysis and dynamics on the cone of discrete radon measures. Ph.D. thesis, Bielefeld University, 2019.
[13] Lang, S.:
Introduction to differentiable manifolds. Springer Science & Business Media, New York, 2006.
MR 1931083
[14] Lee, J.:
Introduction to smooth manifolds. Springer, New York, 2013.
MR 2954043
[15] Ma, Z.-M., Röckner, M.:
Construction of diffusions on configuration spaces. Osaka J. Math. 37 (2000), 273–314.
MR 1772834
[16] Michor, P.W.:
Gauge theory for fiber bundles. Monographs and Textbooks in Physical Science, Lecture Notes, Bibliopolis, Naples, 1991.
MR 1204655
[18] Röckner, M.:
Stochastic analysis on configuration spaces: Basic ideas and recent results. New Directions in Dirichlet Forms, Studies in Advanced Mathematics, Providence, RI: American Mathematical Society, 1998, arXiv:math/9803162 [math.PR], pp. 157–231.
MR 1652281