Previous |  Up |  Next

Article

Title: On open maps and related functions over the Salbany compactification (English)
Author: Nxumalo, Mbekezeli
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 60
Issue: 1
Year: 2024
Pages: 21-33
Summary lang: English
.
Category: math
.
Summary: Given a topological space $X$, let $\mathcal{U}X$ and $\eta _{X}\colon X\rightarrow \mathcal{U}X$ denote, respectively, the Salbany compactification of $X$ and the compactification map called the Salbany map of $X$. For every continuous function $f\colon X\rightarrow Y$, there is a continuous function $\mathcal{U}f\colon \mathcal{U}X\rightarrow \mathcal{U}Y$, called the Salbany lift of $f$, satisfying $(\mathcal{U}f)\circ \eta _{X}=\eta _{Y}\circ f$. If a continuous function $f\colon X\rightarrow Y$ has a stably compact codomain $Y$, then there is a Salbany extension $F\colon \mathcal{U}X\rightarrow Y$ of $f$, not necessarily unique, such that $F\circ \eta _{X}=f$. In this paper, we give a condition on a space such that its Salbany map is open. In particular, we prove that in a class of Hausdorff spaces, the spaces with open Salbany maps are precisely those that are almost discrete. We also investigate openness of the Salbany lift and a Salbany extension of a continuous function. Related to open continuous functions are initial maps as well as nearly open maps. It turns out that the Salbany map of every space is both initial and nearly open. We repeat the procedure done for openness of Salbany maps, Salbany lifts and Salbany extensions to their initiality and nearly openness. (English)
Keyword: ultrafilter
Keyword: ultrafilter space
Keyword: compact space
Keyword: compactification
Keyword: open map
Keyword: initial map
Keyword: nearly open map
Keyword: compact-open basis
Keyword: spectral space
Keyword: quasi-spectral space
MSC: 54D35
MSC: 54D80
DOI: 10.5817/AM2024-1-21
.
Date available: 2024-02-07T14:11:57Z
Last updated: 2024-02-07
Stable URL: http://hdl.handle.net/10338.dmlcz/152025
.
Reference: [1] Adjei, I., Dube, T.: The Banaschewski extension and some variants of openness.Houston J. Math. 47 (2021), 245–261. MR 4447972
Reference: [2] Al-Hajri, M., Belaid, K., Echi, O.: Stone spaces and compactifications.Pure Math. Sci. 2 (2) (2013), 75–81. 10.12988/pms.2013.13010
Reference: [3] Bentley, H.L., Herrlich, H.: A characterization of the prime closed filter compactification of a topological space.Quaest. Math. 25 (3) (2002), 381–396. MR 1931288, 10.2989/16073600209486024
Reference: [4] Bezhanishvili, G., Gabelaia, D., Jibladze, M., Morandi, P.J.: Profinite topological spaces.Theory Appl. Categ. 30 (53) (2015), 1841–1863. MR 3595566
Reference: [5] Bezhanishvili, G., Mines, R., Morandi, P.J.: Topo-canonical completions of closure algebras and Heyting algebras.Algebra Universalis 58 (2008), 1–34. MR 2375279, 10.1007/s00012-007-2032-2
Reference: [6] D., Harris: Closed images of the Wallman compactification.Proc. Amer. Math. Soc. 42 (1) (1974), 312–319. MR 0343238, 10.1090/S0002-9939-1974-0343238-9
Reference: [7] Dimov, G.: Open and other kinds of map extensions over zero-dimensional local compactifications.Topology Appl. 157 (14) (2010), 2251–2260. MR 2670501
Reference: [8] Engelking, R.: General topology.Sigma Ser. Pure Math., vol. 6, Heldermann Verlag, Berlin, 1989, pp. viii+529 pp. MR 1039321
Reference: [9] Kuratowski, K.: Topology.vol. 1, Polish Scientific Publishers, Academic Press, Warsaw, New York and London, 1966. MR 0217751
Reference: [10] Nxumalo, M.S.: Ultrafilters and compactification.Master's thesis, University of the Western Cape, 2019, 72 pp.
Reference: [11] Salbany, S.: Ultrafilter spaces and compactifications.Port. Math. 57 (4) (2000), 481–492. MR 1807357
Reference: [12] Smyth, M.B.: Stable compactification 1.J. Lond. Math. Soc. 2 (2) (1992), 321–340. MR 1171559, 10.1112/jlms/s2-45.2.321
.

Files

Files Size Format View
ArchMathRetro_060-2024-1_2.pdf 439.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo