Previous |  Up |  Next

Article

Title: Condition numbers of Hessenberg companion matrices (English)
Author: Cox, Michael
Author: Vander Meulen, Kevin N.
Author: Van Tuyl, Adam
Author: Voskamp, Joseph
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 1
Year: 2024
Pages: 191-209
Summary lang: English
.
Category: math
.
Summary: The Fiedler matrices are a large class of companion matrices that include the well-known Frobenius companion matrix. The Fiedler matrices are part of a larger class of companion matrices that can be characterized by a Hessenberg form. We demonstrate that the Hessenberg form of the Fiedler companion matrices provides a straight-forward way to compare the condition numbers of these matrices. We also show that there are other companion matrices which can provide a much smaller condition number than any Fiedler companion matrix. We finish by exploring the condition number of a class of matrices obtained from perturbing a Frobenius companion matrix while preserving the characteristic polynomial.\looseness -1 (English)
Keyword: companion matrix
Keyword: Fiedler companion matrix
Keyword: condition number
Keyword: generalized companion matrix
MSC: 15A12
MSC: 15B99
DOI: 10.21136/CMJ.2024.0060-23
.
Date available: 2024-03-13T10:07:26Z
Last updated: 2024-03-18
Stable URL: http://hdl.handle.net/10338.dmlcz/152275
.
Reference: [1] Cox, M.: On Conditions Numbers of Companion Matrices: M.Sc. Thesis.McMaster University, Hamilton (2018).
Reference: [2] Deaett, L., Fischer, J., Garnett, C., Meulen, K. N. Vander: Non-sparse companion matrices.Electron. J. Linear Algebra 35 (2019), 223-247. Zbl 1419.15030, MR 3982283, 10.13001/1081-3810.3839
Reference: [3] Terán, F. de, Dopico, F. M., Pérez, J.: Condition numbers for inversion of Fiedler companion matrices.Linear Algebra Appl. 439 (2013), 944-981. Zbl 1281.15004, MR 3061748, 10.1016/j.laa.2012.09.020
Reference: [4] Eastman, B., Kim, I.-J., Shader, B. L., Meulen, K. N. Vander: Companion matrix patterns.Linear Algebra Appl. 463 (2014), 255-272. Zbl 1310.15015, MR 3262399, 10.1016/j.laa.2014.09.010
Reference: [5] Fiedler, M.: A note on companion matrices.Linear Algebra Appl. 372 (2003), 325-331. Zbl 1031.15014, MR 1999154, 10.1016/S0024-3795(03)00548-2
Reference: [6] Garnett, C., Shader, B. L., Shader, C. L., Driessche, P. van den: Characterization of a family of generalized companion matrices.Linear Algebra Appl. 498 (2016), 360-365. Zbl 1371.15019, MR 3478567, 10.1016/j.laa.2015.07.031
Reference: [7] Meulen, K. N. Vander, Vanderwoerd, T.: Bounds on polynomial roots using intercyclic companion matrices.Linear Algebra Appl. 539 (2018), 94-116. Zbl 1380.15011, MR 3739399, 10.1016/j.laa.2017.11.002
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo