[1] Davis, R. A., Liu, H.: 
Theory and inference for a class of observation-driven models with application to time series of counts. Statistica Sinica 26 (2016), 1673-1707. 
DOI  | 
MR 3586234[2] Hawkes, A. G.: 
Spectra of some self-exciting and mutually exciting point processes. Biometrika 58 (1971), 83-90. 
DOI  | 
MR 0278410[3] Fitzmaurice, G. M., Laird, N. M., Ware, J. H.: 
Applied Longitudinal Analysis. Wiley, Hoboken 2004. 
MR 2063401[4] Kalbfleisch, J. D., Prentice, R. L.: 
The Statistical Analysis of Failure Time Data. Wiley, New York 2002. 
MR 1924807[5] Kouřim, T.: Random walks with memory applied to grand slam tennis matches modeling. In: Proc. MathSport International 2019 Conference (e-book). Propobos Publications 2019, pp. 220-227.
[6] Kouřim, T., Volf, P.: 
Discrete random processes with memory: Models and applications. Appl. Math.65 (2020), 271-286. 
DOI  | 
MR 4114252[7] Möller, T. A.: 
Self-exciting threshold models for time series of counts with a finite range. Stoch. Models 32 (2016), 77-98. 
DOI  | 
MR 3457122[8] Murphy, S. A., Sen, P. K.: 
Time-dependent coefficients in a Cox-type regression model. Stoch. Proc. Appl. 39 (1991), 153-180. 
DOI  | 
MR 1135092[9] Volf, P., Kouřim, T.: 
A model of discrete random walk with history-dependent transition probabilities. Commun. Statist. - Theory and Methods 52 (2023), 5173-5186. 
DOI  | 
MR 4597932[10] Wei, L. T., Lin, D. Y., Weissfeld, L.: 
Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. J. Amer. Statist. Assoc. 84 (1989), 1065-1073. 
DOI  | 
MR 1134494[11] Weiss, Ch. H.: An Introduction to Discrete Valued Time Series. Wiley, New York 2018.
[12] Winkelmann, R.: 
Econometric Analysis of Count Data. Springer, Berlin 2008. 
MR 2148271