[1] Alghamdi, A. M., Gala, S., Ragusa, M. A., Yang, J. Q.:
Regularity criterion via two components of velocity on weak solutions to the shear thinning fluids in $\Bbb R^3$. Comput. Appl. Math. 39 (2020), Article ID 234, 9 pages.
DOI 10.1007/s40314-020-01281-w |
MR 4132926 |
Zbl 1463.35138
[2] Astarita, G., Marrucci, G.: Principles of Non-Newtonian Fluid Mechanics. McGraw-Hill, London (1974).
[3] Bae, H.-O., Choe, H. J., Kim, D. W.:
Regularity and singularity of weak solutions to Ostwald-de Waele flows. J. Korean Math. Soc. 37 (2000), 957-975.
MR 1803282 |
Zbl 0977.76005
[5] Böhme, G.:
Non-Newtonian Fluid Mechanics. North-Holland Series in Applied Mathematics and Mechanics 31. North-Holland, Amsterdam (1987).
MR 0882542 |
Zbl 0713.76004
[9] Ladyzhenskaya, O. A.:
New equations for the description of the motion of viscous incompressible fluids and solvability in the large of boundary value problems for them. Tr. Mat. Inst. Steklova 102 (1967), 85-104 Russian.
MR 0226907 |
Zbl 0202.37802
[10] Ladyzhenskaya, O. A.:
The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969).
MR 0254401 |
Zbl 0184.52603
[11] Lions, J.-L.:
Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes mathematiques. Dunod, Paris (1969), French.
MR 0259693 |
Zbl 0189.40603
[12] Loayza, M., Rojas-Medar, M. A.:
A weak-$L^p$ Prodi-Serrin type regularity criterion for the micropolar fluid equations. J. Math. Phys. 57 (2016), Article ID 021512, 6 pages.
DOI 10.1063/1.4942047 |
MR 3462971 |
Zbl 1342.35223
[14] Málek, J., Rajagopal, K. R.:
Mathematical issues concerning the Navier-Stokes equations and some of its generalizations. Evolutionary Equations. Volume II Handbook of Differential Equations. Elsevier, Amsterdam (2005), 371-459.
DOI 10.1016/S1874-5717(06)80008-3 |
MR 2182831 |
Zbl 1095.35027