Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
thermo-poroelasticity; fully implicit nonlinear discrete scheme; symmetric interior penalty discontinuous Galerkin method; a priori error estimate
Summary:
We propose a symmetric interior penalty discontinuous Galerkin (DG) method for nonlinear fully coupled quasi-static thermo-poroelasticity problems. Firstly, a fully implicit nonlinear discrete scheme is constructed by adopting the DG method for the spatial approximation and the backward Euler method for the temporal discretization. Subsequently, the existence and uniqueness of the solution of the numerical scheme is proved, and then we derive the a priori error estimate for the three variables, i.e., the displacement, the pressure and the temperature. Lastly, we carry out numerical experiments to confirm the theoretical findings of our suggested approach.
References:
[1] Adams, R. A.: Sobolev Spaces. Pure and Applied Mathematics 65. Academic Press, New York (1975). MR 0450957 | Zbl 0314.46030
[2] Antonietti, P. F., Bonetti, S., Botti, M.: Discontinuous Galerkin approximation of the fully coupled thermo-poroelastic problem. SIAM J. Sci. Comput. 45 (2023), A621--A645. DOI 10.1137/22M149874 | MR 4579739 | Zbl 1529.65052
[3] Arnold, D. N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982), 742-760. DOI 10.1137/0719052 | MR 664882 | Zbl 0482.65060
[4] Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002), 1749-1779. DOI 10.1137/S0036142901384162 | MR 1885715 | Zbl 1008.65080
[5] al., S. Balay et: PETSc Users Manual. Technical Report ANL-95/11-Revision 3.14. Argonne National Laboratory, Lemont (2020).
[6] Balay, S., Gropp, W. D., McInnes, L. C., Smith, B. F.: Efficient management of parallelism in object-oriented numerical software libraries. Modern Software Tools in Scientific Computing Birkhäuser, Boston (1997), 163-202. DOI 10.1007/978-1-4612-1986-6_8 | MR 1452877 | Zbl 0882.65154
[7] Balay, S., Gropp, W. D., McInnes, L. C., Smith, B. F.: PETSc. Available at https://www.mcs.anl.gov/petsc (2019).
[8] Biot, M. A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26 (1955), 182-185. DOI 10.1063/1.1721956 | MR 0066874 | Zbl 0067.23603
[9] Bociu, L., Guidoboni, G., Sacco, R., Webster, J. T.: Analysis of nonlinear poro-elastic and poro-visco-elastic models. Arch. Ration. Mech. Anal. 222 (2016), 1445-1519. DOI 10.1007/s00205-016-1024-9 | MR 3544331 | Zbl 1361.35139
[10] Brun, M. K., Ahmed, E., Berre, I., Nordbottem, J. M., Radu, F. A.: Monolithic and splitting solution schemes for fully coupled quasi-static thermo-poroelasticity with nonlinear convective transport. Comput. Math. Appl. 80 (2020), 1964-1984. DOI 10.1016/j.camwa.2020.08.022 | MR 4146798 | Zbl 1451.74204
[11] Brun, M. K., Ahmed, E., Nordbottem, J. M., Radu, F. A.: Well-posedness of the fully coupled quasi-static thermo-poroelastic equations with nonlinear convective transport. J. Math. Anal. Appl. 471 (2019), 239-266. DOI 10.1016/j.jmaa.2018.10.074 | MR 3906323 | Zbl 1457.74055
[12] Brun, M. K., Berre, I., Nordbottem, J. M., Radu, F. A.: Upscaling of the coupling of hydromechanical and thermal processes in a quasi-static poroelastic medium. Transp. Porous Media 124 (2018), 137-158. DOI 10.1007/s11242-018-1056-8 | MR 3825656
[13] J. Douglas, Jr., T. Dupont: Interior penalty procedures for elliptic and parabolic Galerkin methods. Computing Methods in Applied Sciences Lecture Notes in Physics 58. Springer, Berlin (1976), 207-216. DOI 10.1007/BFb0120591 | MR 0440955
[14] J. Douglas, Jr., J. E. Roberts: Numerical methods for a model for compressible miscible displacement in porous media. Math. Comput. 41 (1983), 441-459. DOI 10.1090/S0025-5718-1983-0717695-3 | MR 717695 | Zbl 0537.76062
[15] Girault, V., Rivière, B.: DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition. SIAM J. Numer. Anal. 47 (2009), 2052-2089. DOI 10.1137/070686081 | MR 2519594 | Zbl 1406.76082
[16] Girault, V., Rivière, B., Wheeler, M. F.: A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems. Math. Comput. 74 (2005), 53-84. DOI 10.1090/S0025-5718-04-01652-7 | MR 2085402 | Zbl 1057.35029
[17] Hansbo, P., Larson, M. G.: Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche's method. Comput. Methods Appl. Mech. Eng. 191 (2002), 1895-1908. DOI 10.1016/S0045-7825(01)00358-9 | MR 1886000 | Zbl 1098.74693
[18] Kaewjuea, W., Senjuntichai, T., Rajapakse, R. K. N. D.: Dynamic response of borehole in poroelastic medium with disturbed zone. CMES, Comput. Model. Eng. Sci. 101 (2014), 207-228. DOI 10.3970/cmes.2014.101.207 | MR 3309373 | Zbl 1356.74135
[19] Masri, R., Shen, B., Rivière, B.: Discontinuous Galerkin approximations to elliptic and parabolic problems with a Dirac line source. ESAIM, Math. Model. Numer. Anal. 57 (2023), 585-620. DOI 10.1051/m2an/2022095 | MR 4565982 | Zbl 1514.65135
[20] Oden, J. T., Baumann, I. Babuška C. E.: A discontinuous $hp$ finite element method for diffusion problems. J. Comput. Phys. 146 (1998), 491-519. DOI 10.1006/jcph.1998.6032 | MR 1654911 | Zbl 0926.65109
[21] Ohm, M. R., Lee, H. Y., Shin, J. Y.: Error estimates for discontinuous Galerkin method for nonlinear parabolic equations. J. Math. Anal. Appl. 315 (2006), 132-143. DOI 10.1016/j.jmaa.2005.07.027 | MR 2196535 | Zbl 1094.65091
[22] Phillips, P. J., Wheeler, M. F.: A coupling of mixed and discontinuous Galerkin finite element methods for poroelasticity. Comput. Geosci. 12 (2008), 417-435. DOI 10.1007/s10596-008-9082-1 | MR 2461315 | Zbl 1155.74048
[23] Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. Frontiers in Applied Mathematics 35. SIAM, Philadelphia (2008). DOI 10.1137/1.9780898717440 | MR 2431403 | Zbl 1153.65112
[24] Smillie, A., Sobey, I., Molnar, Z.: A hydroelastic model of hydrocephalus. J. Fluid Mech. 539 (2005), 417-443. DOI 10.1017/S0022112005005707 | MR 2262053 | Zbl 1076.74040
[25] Stewart, D. E.: Dynamics with Inequalities: Impacts and Hard Constraints. SIAM, Philadelphia (2011). DOI 10.1137/1.9781611970715 | MR 2857428 | Zbl 1241.37003
[26] Sun, J., Shu, C.-W., Xing, Y.: Discontinuous Galerkin methods for stochastic Maxwell equations with multiplicative noise. ESAIM, Math. Model. Numer. Anal. 57 (2023), 841-864. DOI 10.1051/m2an/2022084 | MR 4567994 | Zbl 1529.65084
[27] Suvorov, A. P., Selvadurai, A. P. S.: Macroscopic constitutive equations of thermo-poroviscoelasticity derived using eigenstrains. J. Mech. Phys. Solids 58 (2010), 1461-1473. DOI 10.1016/j.jmps.2010.07.016 | MR 2742019 | Zbl 1200.74004
[28] Terzaghi, K.: Erdbaumechanik auf bodenphysikalischer Grundlage. Deuticke, Leipzig (1925), German \99999JFM99999 51.0655.07.
[29] Weinstein, T., Bennethum, L. S.: On the derivation of the transport equation for swelling porous materials with finite deformation. Int. J. Eng. Sci. 44 (2006), 1408-1422. DOI 10.1016/j.ijengsci.2006.08.001 | MR 2273503 | Zbl 1213.74122
[30] Wheeler, M. F.: A priori $L_2$ error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10 (1973), 723-759. DOI 10.1137/0710062 | MR 0351124 | Zbl 0232.35060
[31] Yang, J., Chen, Y.: A priori error analysis of a discontinuous Galerkin approximation for a kind of compressible miscible displacement problems. Sci. China, Math. 53 (2010), 2679-2696. DOI 10.1007/s11425-010-3128-2 | MR 2728271 | Zbl 1273.76284
[32] Yang, X., Zhao, W., Zhao, W.: Strong optimal error estimates of discontinuous Galerkin method for multiplicative noise driving nonlinear SPDEs. Numer. Methods Partial Differ. Equations 39 (2023), 2073-2095. DOI 10.1002/num.22958 | MR 4570537 | Zbl 07776998
[33] Zhang, J., Rui, H.: Galerkin method for the fully coupled quasi-static thermo-poroelastic problem. Comput. Math. Appl. 118 (2022), 95-109. DOI 10.1016/j.camwa.2022.04.019 | MR 4432106 | Zbl 1524.76481
[34] Zhang, J., Rui, H.: A coupling of Galerkin and mixed finite element methods for the quasi-static thermo-poroelasticity with nonlinear convective transport. J. Comput. Appl. Math. 441 (2024), Article ID 115672, 17 pages. DOI 10.1016/j.cam.2023.115672 | MR 4668322 | Zbl 1537.65143
[35] Zhang, J., Xia, Y., Xu, Y.: Moving water equilibria preserving discontinuous Galerkin method for the shallow water equations. J. Sci. Comput. 95 (2023), Article ID 48, 21 pages. DOI 10.1007/s10915-023-02174-w | MR 4565862 | Zbl 07698922
Partner of
EuDML logo